revert baselines/common/tests/util.py
.
This commit is contained in:
@@ -1,89 +1,88 @@
|
||||
import inspect
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
|
||||
|
||||
N_TRIALS = 10000
|
||||
N_EPISODES = 100
|
||||
|
||||
|
||||
def simple_test(env_fn, learn_fn, min_reward_fraction, n_trials=N_TRIALS):
|
||||
def seeded_env_fn():
|
||||
env = env_fn()
|
||||
env.seed(0)
|
||||
return env
|
||||
|
||||
np.random.seed(0)
|
||||
env = DummyVecEnv([seeded_env_fn])
|
||||
env = DummyVecEnv([env_fn])
|
||||
|
||||
|
||||
with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(allow_soft_placement=True)).as_default():
|
||||
tf.set_random_seed(0)
|
||||
|
||||
model = learn_fn(env)
|
||||
|
||||
sum_rew = 0
|
||||
obs = [0]
|
||||
done = [True]
|
||||
args = inspect.getfullargspec(model.step).args
|
||||
use_external_memory_management = model.initial_state is not None
|
||||
state = model.initial_state
|
||||
done = True
|
||||
|
||||
for i in range(n_trials):
|
||||
if done[0]:
|
||||
if done:
|
||||
obs = env.reset()
|
||||
done = [True]
|
||||
state = model.initial_state
|
||||
|
||||
kwargs = {}
|
||||
if use_external_memory_management:
|
||||
kwargs['S'] = state
|
||||
kwargs['M'] = done
|
||||
elif 'done' in args:
|
||||
kwargs['done'] = done
|
||||
|
||||
a, v, state, _ = model.step(obs, **kwargs)
|
||||
obs, rew, done, _ = env.step(a)
|
||||
sum_rew += float(rew)
|
||||
|
||||
print("Reward in {} trials is {}".format(n_trials, sum_rew))
|
||||
assert sum_rew > min_reward_fraction * n_trials, \
|
||||
'sum of rewards {} is less than {} of ' \
|
||||
'the total number of trials {}'.format(sum_rew, min_reward_fraction, n_trials)
|
||||
|
||||
|
||||
def reward_per_episode_test(env_fn, learn_fn, min_avg_reward, n_trials=N_EPISODES):
|
||||
env = DummyVecEnv([env_fn])
|
||||
with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(allow_soft_placement=True)).as_default():
|
||||
model = learn_fn(env)
|
||||
N_TRIALS = 100
|
||||
observations, actions, rewards = rollout(env, model, N_TRIALS)
|
||||
rewards = [sum(r) for r in rewards]
|
||||
avg_rew = sum(rewards) / N_TRIALS
|
||||
print("Average reward in {} episodes is {}".format(n_trials, avg_rew))
|
||||
assert avg_rew > min_avg_reward, \
|
||||
'average reward in {} episodes ({}) is less than {}'.format(n_trials, avg_rew, min_avg_reward)
|
||||
|
||||
|
||||
def rollout(env, model, n_trials):
|
||||
rewards = []
|
||||
actions = []
|
||||
observations = []
|
||||
for i in range(n_trials):
|
||||
obs = env.reset()
|
||||
state = model.initial_state if hasattr(model, 'initial_state') else None
|
||||
episode_rew = []
|
||||
episode_actions = []
|
||||
episode_obs = []
|
||||
while True:
|
||||
if state is not None:
|
||||
a, v, state, _ = model.step(obs, S=state, M=[False])
|
||||
else:
|
||||
a, v, _, _ = model.step(obs)
|
||||
|
||||
obs, rew, done, _ = env.step(a)
|
||||
sum_rew += float(rew)
|
||||
|
||||
print("Reward in {} trials is {}".format(n_trials, sum_rew))
|
||||
assert sum_rew > min_reward_fraction * n_trials, \
|
||||
'sum of rewards {} is less than {} of the total number of trials {}'.format(sum_rew, min_reward_fraction, n_trials)
|
||||
|
||||
|
||||
|
||||
def reward_per_episode_test(env_fn, learn_fn, min_avg_reward, n_trials=N_EPISODES):
|
||||
env = DummyVecEnv([env_fn])
|
||||
|
||||
with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(allow_soft_placement=True)).as_default():
|
||||
model = learn_fn(env)
|
||||
|
||||
N_TRIALS = 100
|
||||
|
||||
observations, actions, rewards = rollout(env, model, N_TRIALS)
|
||||
rewards = [sum(r) for r in rewards]
|
||||
|
||||
avg_rew = sum(rewards) / N_TRIALS
|
||||
print("Average reward in {} episodes is {}".format(n_trials, avg_rew))
|
||||
assert avg_rew > min_avg_reward, \
|
||||
'average reward in {} episodes ({}) is less than {}'.format(n_trials, avg_rew, min_avg_reward)
|
||||
|
||||
def rollout(env, model, n_trials):
|
||||
rewards = []
|
||||
actions = []
|
||||
observations = []
|
||||
|
||||
for i in range(n_trials):
|
||||
obs = env.reset()
|
||||
state = model.initial_state if hasattr(model, 'initial_state') else None
|
||||
episode_rew = []
|
||||
episode_actions = []
|
||||
episode_obs = []
|
||||
|
||||
while True:
|
||||
if state is not None:
|
||||
a, v, state, _ = model.step(obs, S=state, M=[False])
|
||||
else:
|
||||
a,v, _, _ = model.step(obs)
|
||||
|
||||
obs, rew, done, _ = env.step(a)
|
||||
|
||||
episode_rew.append(rew)
|
||||
episode_actions.append(a)
|
||||
episode_obs.append(obs)
|
||||
|
||||
if done:
|
||||
break
|
||||
|
||||
rewards.append(episode_rew)
|
||||
actions.append(episode_actions)
|
||||
observations.append(episode_obs)
|
||||
|
||||
return observations, actions, rewards
|
||||
|
||||
|
Reference in New Issue
Block a user