release Internal changes (#895)
* joshim5 changes (width and height to WarpFrame wrapper) * match network output with action distribution via a linear layer only if necessary (#167) * support color vs. grayscale option in WarpFrame wrapper (#166) * support color vs. grayscale option in WarpFrame wrapper * Support color in other wrappers * Updated per Peters suggestions * fixing test failures * ppo2 with microbatches (#168) * pass microbatch_size to the model during construction * microbatch fixes and test (#169) * microbatch fixes and test * tiny cleanup * added assertions to the test * vpg-related fix * Peterz joshim5 subclass ppo2 model (#170) * microbatch fixes and test * tiny cleanup * added assertions to the test * vpg-related fix * subclassing the model to make microbatched version of model WIP * made microbatched model a subclass of ppo2 Model * flake8 complaint * mpi-less ppo2 (resolving merge conflict) * flake8 and mpi4py imports in ppo2/model.py * more un-mpying * merge master * updates to the benchmark viewer code + autopep8 (#184) * viz docs and syntactic sugar wip * update viewer yaml to use persistent volume claims * move plot_util to baselines.common, update links * use 1Tb hard drive for results viewer * small updates to benchmark vizualizer code * autopep8 * autopep8 * any folder can be a benchmark * massage games image a little bit * fixed --preload option in app.py * remove preload from run_viewer.sh * remove pdb breakpoints * update bench-viewer.yaml * fixed bug (#185) * fixed bug it's wrong to do the else statement, because no other nodes would start. * changed the fix slightly * Refactor her phase 1 (#194) * add monitor to the rollout envs in her RUN BENCHMARKS her * Slice -> Slide in her benchmarks RUN BENCHMARKS her * run her benchmark for 200 epochs * dummy commit to RUN BENCHMARKS her * her benchmark for 500 epochs RUN BENCHMARKS her * add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her * add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her * add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her * disable saving of policies in her benchmark RUN BENCHMARKS her * run fetch benchmarks with ppo2 and ddpg RUN BENCHMARKS Fetch * run fetch benchmarks with ppo2 and ddpg RUN BENCHMARKS Fetch * launcher refactor wip * wip * her works on FetchReach * her runner refactor RUN BENCHMARKS Fetch1M * unit test for her * fixing warnings in mpi_average in her, skip test_fetchreach if mujoco is not present * pickle-based serialization in her * remove extra import from subproc_vec_env.py * investigating differences in rollout.py * try with old rollout code RUN BENCHMARKS her * temporarily use DummyVecEnv in cmd_util.py RUN BENCHMARKS her * dummy commit to RUN BENCHMARKS her * set info_values in rollout worker in her RUN BENCHMARKS her * bug in rollout_new.py RUN BENCHMARKS her * fixed bug in rollout_new.py RUN BENCHMARKS her * do not use last step because vecenv calls reset and returns obs after reset RUN BENCHMARKS her * updated buffer sizes RUN BENCHMARKS her * fixed loading/saving via joblib * dust off learning from demonstrations in HER, docs, refactor * add deprecation notice on her play and plot files * address comments by Matthias * 1.5 months of codegen changes (#196) * play with resnet * feed_dict version * coinrun prob and more stats * fixes to get_choices_specs & hp search * minor prob fixes * minor fixes * minor * alternative version of rl_algo stuff * pylint fixes * fix bugs, move node_filters to soup * changed how get_algo works * change how get_algo works, probably broke all tests * continue previous refactor * get eval_agent running again * fixing tests * fix tests * fix more tests * clean up cma stuff * fix experiment * minor changes to eval_agent to make ppo_metal use gpu * make dict space work * modify mac makefile to use conda * recurrent layers * play with bn and resnets * minor hp changes * minor * got rid of use_fb argument and jtft (joint-train-fine-tune) functionality built test phase directly into AlgoProb * make new rl algos generateable * pylint; start fixing tests * fixing tests * more test fixes * pylint * fix search * work on search * hack around infinite loop caused by scan * algo search fixes * misc changes for search expt * enable annealing, overriding options of Op * pylint fixes * identity op * achieve use_last_output through masking so it automatically works in other distributions * fix tests * minor * discrete * use_last_output to be just a preference, not a hard constraint * pred delay, pruning * require nontrivial inputs * aliases for get_sm * add probname to probs * fixes * small fixes * fix tests * fix tests * fix tests * minor * test scripts * dualgru network improvements * minor * work on mysterious bugs * rcall gpu-usage command for kube * use cache dir that’s not in code folder, so that it doesn’t get removed by rcall code rsync * add power mode to gpu usage * make sure train/test actually different * remove VR for now * minor fixes * simplify soln_db * minor * big refactor of mpi eda * improve mpieda for multitask * - get rid of timelimit hack - add __del__ to cleanup SubprocVecEnv * get multitask working better * fixes * working on atari, various * annotate ops with whether they’re parametrized * minor * gym version * rand atari prob * minor * SolnDb bugfix and name change * pyspy script * switch conv layers * fix roboschool/bullet3 * nenvs assertion * fix rand atari * get rid of blanket exception catching fix soln_db bug * fix rand_atari * dynamic routing as cmdline arg * slight modifications to test_mpi_map and pyspy-all * max_tries argument for run_until_successs * dedup option in train_mle * simplify soln_db * increase atari horizon for 1 experiment * start implementing reward increment * ent multiplier * create cc dsl other misc fixes * cc ops * q_func -> qs in rl_algos_cc.py * fix PredictDistr * rl_ops_cc fixes, MakeAction op * augment algo agent to support cc stuff * work on ddpg experiments * fix blocking temporarily change logger * allow layer scaling * pylint fixes * spawn_method * isolate ddpg hacks * improve pruning * use spawn for subproc * remove use of python -c in rcall * fix pylint warning * fix static * maybe fix local backend * switch to DummyVecEnv * making some fixes via pylint * pylint fixes * fixing tests * fix tests * fix tests * write scaffolding for SSL in Codegen * logger fix * fix error * add EMA op to sl_ops * save many changes * save * add upsampler * add sl ops, enhance state machine * get ssl search working — some gross hacking * fix session/graph issue * fix importing * work on mle * - scale embeddings in gru model - better exception handling in sl_prob - use emas for test/val - use non-contrib batch_norm layer * improve logging * option to average before dumping in logger * default arguments, etc * new ddpg and identity test * concat fix * minor * move realistic ssl stuff to third-party (underscore to dash) * fixes * remove realistic_ssl_evaluation * pylint fixes * use gym master * try again * pass around args without gin * fix tests * separate line to install gym * rename failing tests that should be ignored * add data aug * ssl improvements * use fixed time limit * try to fix baselines tests * add score_floor, max_walltime, fiddle with lr decay * realistic_ssl * autopep8 * various ssl - enable blocking grad for simplification - kl - multiple final prediction * fix pruning * misc ssl stuff * bring back linear schedule, don’t use allgather for collecting stats (i’ve been getting nondeterministic errors from the old code) * save/load weights in SSL, big stepsize * cleanup SslProb * fix * get rid of kl coef * fix simplification, lower lr * search over hps * minor fixes * minor * static analysis * move files and rename things for improved consistency. still broken, and just saving before making nontrivial changes * various * make tests pass * move coinrun_train to codegen since it depends on codegen * fixes * pylint fixes * improve tests fix some things * improve tests * lint * fix up db_info.py, tests * mostly restore master version of envs directory, except for makefile changes * fix tests * improve printing * minor fixes * fix fixmes * pruning test * fixes * lint * write new test that makes tf graphs of random algos; fix some bugs it caught * add —delete flag to rcall upload-code command * lint * get cifar10 lazily for testing purposes * disable codegen ci tests for now * clean up rl_ops * rename spec classes * td3 with identity test * identity tests without gin files * remove gin.configurable from AlgoAgent * comments about reduction in rl_ops_cc * address @pzhokhov comments * fix tests * more linting * better tests * clean up filtering a bit * fix concat * delayed logger configuration (#208) * delayed logger configuration * fix typo * setters and getters for Logger.DEFAULT as well * do away with fancy property stuff - unable to get it to work with class level methods * grammar and spaces * spaces * use get_current function instead of reading Logger.CURRENT * autopep8 * disable mpi in subprocesses (#213) * lazy_mpi load * cleanups * more lazy mpi * don't pretend that class is a module, just use it as a class * mass-replace mpi4py imports * flake8 * fix previous lazy_mpi imports * silly recursion * try os.environ hack * better prefix test, work with mpich * restored MPI imports * removed commented import in test_with_mpi * restored codegen from master * remove lazy mpi * restored changes from rl-algs * remove extra files * address Chris' comments * use spawn for shmem vec env as well (#2) (#219) * lazy_mpi load * cleanups * more lazy mpi * don't pretend that class is a module, just use it as a class * mass-replace mpi4py imports * flake8 * fix previous lazy_mpi imports * silly recursion * try os.environ hack * better prefix test, work with mpich * restored MPI imports * removed commented import in test_with_mpi * restored codegen from master * remove lazy mpi * restored changes from rl-algs * remove extra files * port mpi fix to shmem vec env * increase the mpi test default timeout * change humanoid hyperparameters, get rid of clip_Frac annealing, as it's apparently dangerous * remove clip_frac schedule from ppo2 * more timesteps in humanoid run * whitespace + RUN BENCHMARKS * baselines: export vecenvs from folder (#221) * baselines: export vecenvs from folder * put missing function back in * add missing imports * more imports * longer mpi timeout? * make default logger configuration the same as call to logger.configure() (#222) * Vecenv refactor (#223) * update karl util * restore pvi flag * change rcall auto cpu behavior, move gin.configurable, add os.makedirs * vecenv refactor * aux buf index fix * add num aux obs * reset level with enter * restore high difficulty flag * bugfix * restore train_coinrun.py * tweaks * renaming * renaming * better arguments handling * more options * options cleanup * game data refactor * more options * args for train_procgen * add close handler to interactive base class * use debug build if debug=True, fix range on aux_obs * add ProcGenEnv to __init__.py, add missing imports to procgen.py * export RemoveDictWrapper and build, update train_procgen.py, move assets download into env creation and replace init_assets_and_build with just build * fix formatting issues * only call global init once * fix path in setup.py * revert part of makefile * ignore IDE files and folders * vec remove dict * export VecRemoveDictObs * remove RemoveDictWrapper * remove IDE files * move shared .h and .cpp files to common folder, update build to use those, dedupe env.cpp * fix missing header * try unified build function * remove old scripts dir * add comment on build * upload libenv with render fixes * tell qthreads to die when we unload the library * pyglet.app.run is garbage * static fixes * whoops * actually vsync is on * cleanup * cleanup * extern C for libenv interface * parse util rcall arg * high difficulty fix * game type enums * ProcGenEnv subclasses * game type cleanup * unrecognized key * unrecognized game type * parse util reorg * args management * typo fix * GinParser * arg tweaks * tweak * restore start_level/num_levels setting * fix create_procgen_env interface * build fix * procgen args in init signature * fix * build fix * fix logger usage in ppo_metal/run_retro * removed unnecessary OrderedDict requirement in subproc_vec_env * flake8 fix * allow for non-mpi tests * mpi test fixes * flake8; removed special logic for discrete spaces in dummy_vec_env * remove forked argument in front of tests - does not play nicely with subprocvecenv in spawned processes; analog of forked in ddpg/test_smoke * Everyrl initial commit & a few minor baselines changes (#226) * everyrl initial commit * add keep_buf argument to VecMonitor * logger changes: set_comm and fix to mpi_mean functionality * if filename not provided, don't create ResultsWriter * change variable syncing function to simplify its usage. now you should initialize from all mpi processes * everyrl coinrun changes * tf_distr changes, bugfix * get_one * bring back get_next to temporarily restore code * lint fixes * fix test * rename profile function * rename gaussian * fix coinrun training script * change random seeding to work with new gym version (#231) * change random seeding to work with new gym version * move seeding to seed() method * fix mnistenv * actually try some of the tests before pushing * more deterministic fixed seq * misc changes to vecenvs and run.py for benchmarks (#236) * misc changes to vecenvs and run.py for benchmarks * dont seed global gen * update more references to assert_venvs_equal * Rl19 (#232) * everyrl initial commit * add keep_buf argument to VecMonitor * logger changes: set_comm and fix to mpi_mean functionality * if filename not provided, don't create ResultsWriter * change variable syncing function to simplify its usage. now you should initialize from all mpi processes * everyrl coinrun changes * tf_distr changes, bugfix * get_one * bring back get_next to temporarily restore code * lint fixes * fix test * rename profile function * rename gaussian * fix coinrun training script * rl19 * remove everyrl dir which appeared in the merge for some reason * readme * fiddle with ddpg * make ddpg work * steps_total argument * gpu count * clean up hyperparams and shape math * logging + saving * configuration stuff * fixes, smoke tests * fix stats * make load_results return dicts -- easier to create the same kind of objects with some other mechanism for passing to downstream functions * benchmarks * fix tests * add dqn to tests, fix it * minor * turned annotated transformer (pytorch) into a script * more refactoring * jax stuff * cluster * minor * copy & paste alec code * sign error * add huber, rename some parameters, snapshotting off by default * remove jax stuff * minor * move maze env * minor * remove trailing spaces * remove trailing space * lint * fix test breakage due to gym update * rename function * move maze back to codegen * get recurrent ppo working * enable both lstm and gru * script to print table of benchmark results * various * fix dqn * add fixup initializer, remove lastrew * organize logging stats * fix silly bug * refactor models * fix mpi usage * check sync * minor * change vf coef, hps * clean up slicing in ppo * minor fixes * caching transformer * docstrings * xf fixes * get rid of 'B' and 'BT' arguments * minor * transformer example * remove output_kind from base class until we have a better idea how to use it * add comments, revert maze stuff * flake8 * codegen lint * fix codegen tests * responded to peter's comments * lint fixes * minor changes to baselines (#243) * minor changes to baselines * fix spaces reference * remove flake8 disable comments and fix import * okay maybe don't add spec to vec_env * Merge branch 'master' of github.com:openai/games the commit. * flake8 complaints in baselines/her * update dmlab30 env (#258) * codegen continuous control experiment pr (#256) * finish cherry-pick td3 test commit * removed graph simplification error ingore * merge delayed logger config * merge updated baselines logger * lazy_mpi load * cleanups * use lazy mpi imports in codegen * more lazy mpi * don't pretend that class is a module, just use it as a class * mass-replace mpi4py imports * flake8 * fix previous lazy_mpi imports * removed extra printouts from TdLayer op * silly recursion * running codegen cc experiment * wip * more wip * use actor is input for critic targets, instead of the action taken * batch size 100 * tweak update parameters * tweaking td3 runs * wip * use nenvs=2 for contcontrol (to be comparable with ppo_metal) * wip. Doubts about usefulness of actor in critic target * delayed actor in ActorLoss * score is average of last 100 * skip lack of losses or too many action distributions * 16 envs for contcontrol, replay buffer size equal to horizon (no point in making it longer) * syntax * microfixes * minifixes * run in process logic to bypass tensorflow freezes/failures (per Oleg's suggestion) * squash-merge master, resolve conflicts * remove erroneous file * restore normal MPI imports * move wrappers around a little bit * autopep8 * cleanups * cleanup mpi_eda, autopep8 * make activation function of action distribution customizable * cleanups; preparation for a pr * syntax * merge latest master, resolve conflicts * wrap MPI import with try/except * allow import of modules through env id im baselines cmd_util * flake8 complaints * only wrap box action spaces with ClipActionsWrapper * flake8 * fixes to algo_prob according to Oleg's suggestions * use apply_without_scope flag in ActorLoss * remove extra line in algo/core.py * Rl19 metalearning (#261) * rl19 metalearning and dict obs * master merge arch fix * lint fixes * view fixes * load vars tweaks * user config cleanup * documentation and revisions * pass train comm to rl19 * cleanup * Symshapes - gives codegen ability to evaluate same algo on envs with different ob/ac shapes (#262) * finish cherry-pick td3 test commit * removed graph simplification error ingore * merge delayed logger config * merge updated baselines logger * lazy_mpi load * cleanups * use lazy mpi imports in codegen * more lazy mpi * don't pretend that class is a module, just use it as a class * mass-replace mpi4py imports * flake8 * fix previous lazy_mpi imports * removed extra printouts from TdLayer op * silly recursion * running codegen cc experiment * wip * more wip * use actor is input for critic targets, instead of the action taken * batch size 100 * tweak update parameters * tweaking td3 runs * wip * use nenvs=2 for contcontrol (to be comparable with ppo_metal) * wip. Doubts about usefulness of actor in critic target * delayed actor in ActorLoss * score is average of last 100 * skip lack of losses or too many action distributions * 16 envs for contcontrol, replay buffer size equal to horizon (no point in making it longer) * syntax * microfixes * minifixes * run in process logic to bypass tensorflow freezes/failures (per Oleg's suggestion) * random physics for mujoco * random parts sizes with range 0.4 * add notebook with results into x/peterz * variations of ant * roboschool use gym.make kwargs * use float as lowest score after rank transform * rcall from master * wip * re-enable dynamic routing * wip * squash-merge master, resolve conflicts * remove erroneous file * restore normal MPI imports * move wrappers around a little bit * autopep8 * cleanups * cleanup mpi_eda, autopep8 * make activation function of action distribution customizable * cleanups; preparation for a pr * syntax * merge latest master, resolve conflicts * wrap MPI import with try/except * allow import of modules through env id im baselines cmd_util * flake8 complaints * only wrap box action spaces with ClipActionsWrapper * flake8 * fixes to algo_prob according to Oleg's suggestions * use apply_without_scope flag in ActorLoss * remove extra line in algo/core.py * multi-task support * autopep8 * symbolic suffix-shapes (not B,T yet) * test_with_mpi -> with_mpi rename * remove extra blank lines in algo/core * remove extra blank lines in algo/core * remove more blank lines * symbolify shapes in existing algorithms * minor output changes * cleaning up merge conflicts * cleaning up merge conflicts * cleaning up more merge conflicts * restore mpi_map.py from master * remove tensorflow dependency from VecEnv * make tests use single-threaded session for determinism of KfacOptimizer (#298) * make tests use single-threaded session for determinism of KfacOptimizer * updated comment in kfac.py * remove unused sess_config * add score calculator wrapper, forward property lookups on vecenv wrap… (#300) * add score calculator wrapper, forward property lookups on vecenv wrapper, misc cleanup * tests * pylint * fix vec monitor infos * Workbench (#303) * begin workbench * cleanup * begin procgen config integration * arg tweaks * more args * parameter saving * begin procgen enjoy * tweaks * more workbench * more args sync/restore * cleanup * merge in master * rework args priority * more workbench * more loggign * impala cnn * impala lstm * tweak * tweaks * rl19 time logging * misc fixes * faster pipeline * update local.py * sess and log config tweaks * num processes * logging tweaks * difficulty reward wrapper * logging fixes * gin tweaks * tweak * fix * task id * param loading * more variable loading * entrypoint * tweak * ksync * restore lstm * begin rl19 support * tweak * rl19 rnn * more rl19 integration * fix * cleanup * restore rl19 rnn * cleanup * cleanup * wrappers.get_log_info * cleanup * cleanup * directory cleanup * logging, num_experiments * fixes * cleanup * gin fixes * fix local max gpu * resid nx * num machines and download params * rename * cleanup * create workbench * more reorg * fix * more logging wrappers * lint fix * restore train procgen * restore train procgen * pylint fix * better wrapping * config sweep * args sweep * test workers * mpi_weight * train test comm and high difficulty fix * enjoy show returns * removing gin, procgen_parser * removing gin * procgen args * config fixes * cleanup * cleanup * procgen args fix * fix * rcall syncing * lint * rename mpi_weight * use username for sync * fixes * microbatch fix * Grad clipping in MpiAdamOptimizer, transformer changes (#304) * transformer mnist experiments * version that only builds one model * work on inverted mnist * Add grad clipping to MpiAdamOptimizer * various * transformer changes, loading * get rid of soft labels * transformer baseline * minor * experiments involving all possible training sets * vary training * minor * get ready for fine-tuning expers * lint * minor * Add jrl19 as backend for workbench (#324) enable jrl in workbench minor logger changes * extra functionality in baselines.common.plot_util (#310) * get plot_util from mt_experiments branch * add labels * unit tests for plot_util * Fixed sequence env minor (#333) minor changes to FixedSequenceEnv to allow full score * fix tests (#335) * Procgen Benchmark Updates (#328) * directory cleanup * logging, num_experiments * fixes * cleanup * gin fixes * fix local max gpu * resid nx * tweak * num machines and download params * rename * cleanup * create workbench * more reorg * fix * more logging wrappers * lint fix * restore train procgen * restore train procgen * pylint fix * better wrapping * whackamole walls * config sweep * tweak * args sweep * tweak * test workers * mpi_weight * train test comm and high difficulty fix * enjoy show returns * better joint training * tweak * Add —update to args and add gin-config to requirements.txt * add username to download_file * removing gin, procgen_parser * removing gin * procgen args * config fixes * cleanup * cleanup * procgen args fix * fix * rcall syncing * lint * rename mpi_weight * begin composable game * more composable game * tweak * background alpha * use username for sync * fixes * microbatch fix * lure composable game * merge * proc trans update * proc trans update (#307) * finetuning experiment * Change is_local to use `use_rcall` and fix error of `enjoy.py` with multiple ends * graphing help * add --local * change args_dict['env_name'] to ENV_NAME * finetune experiments * tweak * tweak * reorg wrappers, remove is_local * workdir/local fixes * move finetune experiments * default dir and graphing * more graphing * fix * pooled syncing * tweaks * dir fix * tweak * wrapper mpi fix * wind and turrets * composability cleanup * radius cleanup * composable reorg * laser gates * composable tweaks * soft walls * tweak * begin swamp * more swamp * more swamp * fix * hidden mines * use maze layout * tweak * laser gate tweaks * tweaks * tweaks * lure/propel updates * composable midnight * composable coinmaze * composability difficulty * tweak * add step to save_params * composable offsets * composable boxpush * composable combiner * tweak * tweak * always choose correct number of mechanics * fix * rcall local fix * add steps when dump and save parmas * loading rank 1,2,3.. error fix * add experiments.py * fix loading latest weight with no -rest * support more complex run_id and add more examples * fix typo * move post_run_id into experiments.py * add hp_search example * error fix * joint experiments in progress * joint hp finished * typo * error fix * edit experiments * Save experiments set up in code and save weights per step (#319) * add step to save_params * add steps when dump and save parmas * loading rank 1,2,3.. error fix * add experiments.py * fix loading latest weight with no -rest * support more complex run_id and add more examples * fix typo * move post_run_id into experiments.py * add hp_search example * error fix * joint experiments in progress * joint hp finished * typo * error fix * edit experiments * tweaks * graph exp WIP * depth tweaks * move save_all * fix * restore_dir name * restore depth * choose max mechanics * use override mode * tweak frogger * lstm default * fix * patience is composable * hunter is composable * fixed asset seed cleanup * minesweeper is composable * eggcatch is composable * tweak * applesort is composable * chaser game * begin lighter * lighter game * tractor game * boxgather game * plumber game * hitcher game * doorbell game * lawnmower game * connecter game * cannonaim * outrun game * encircle game * spinner game * tweak * tweak * detonator game * driller * driller * mixer * conveyor * conveyor game * joint pcg experiments * fixes * pcg sweep experiment * cannonaim fix * combiner fix * store save time * laseraim fix * lightup fix * detonator tweaks * detonator fixes * driller fix * lawnmower calibration * spinner calibration * propel fix * train experiment * print load time * system independent hashing * remove gin configurable * task ids fix * test_pcg experiment * connecter dense reward * hard_pcg * num train comms * mpi splits envs * tweaks * tweaks * graph tweaks * graph tweaks * lint fix * fix tests * load bugfix * difficulty timeout tweak * tweaks * more graphing * graph tweaks * tweak * download file fix * pcg train envs list * cleanup * tweak * manually name impala layers * tweak * expect fps * backend arg * args tweak * workbench cleanup * move graph files * workbench cleanup * split env name by comma * workbench cleanup * ema graph * remove Dict * use tf.io.gfile * comments for auto-killing jobs * lint fix * write latest file when not saving all and load it when step=None * ci/runtests.sh - pass all folders to pytest (#342) * ci/runtests.sh - pass all folders to pytest * mpi_optimizer_test precision 1e-4 * fixes to tests * search for tests in the entire jax folder, also remove unnecessary humor * delete unnecessary stuff (#338) * Add initializer for process-level setup in SubprocVecEnv (#276) * Add initializer for process-level setup in SubprocVecEnv Use case: run logger.configure() in each subprocess * Add option to force dummy vec env * Procgen fixes (#352) * tweak * documentation * rely on log_comm, remove mpi averaging from wrappers * pass comm for ppo2 initialization * ppo2 logging * experiment tweaks * auto launch tensorboard when using local backend * graph tweaks * pass caller to config * configure logger and tensorboard * make parent dir if necessary * parentdir tweak * JRL PPO test with delayed identity env (#355) * add a custom delay to identity_env * min reward 0.8 in delayed identity test * seed the tests, perfect score on delayed_identity_test * delay=1 in delayed_identity_test * flake8 complaints * increased number of steps in fixed_seq_test * seed identity tests to ensure reproducibility * docstrings * (onp, np) -> (np, jp), switch jax code to use mark_slow decorator (#363) switch to mark_slow decorator * fix tests - add matplotlib to setup_requires, put mpi4py import in try-except * test fixes
This commit is contained in:
@@ -11,4 +11,4 @@ install:
|
||||
|
||||
script:
|
||||
- flake8 . --show-source --statistics
|
||||
- docker run baselines-test pytest -v .
|
||||
- docker run -e RUNSLOW=1 baselines-test pytest -v .
|
||||
|
@@ -92,7 +92,7 @@ class Model(object):
|
||||
self.initial_state = step_model.initial_state
|
||||
tf.global_variables_initializer().run(session=sess)
|
||||
|
||||
def learn(network, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20,
|
||||
def learn(network, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=100, nprocs=32, nsteps=20,
|
||||
ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5,
|
||||
kfac_clip=0.001, save_interval=None, lrschedule='linear', load_path=None, is_async=True, **network_kwargs):
|
||||
set_global_seeds(seed)
|
||||
|
@@ -11,7 +11,7 @@ KFAC_DEBUG = False
|
||||
|
||||
|
||||
class KfacOptimizer():
|
||||
|
||||
# note that KfacOptimizer will be truly synchronous (and thus deterministic) only if a single-threaded session is used
|
||||
def __init__(self, learning_rate=0.01, momentum=0.9, clip_kl=0.01, kfac_update=2, stats_accum_iter=60, full_stats_init=False, cold_iter=100, cold_lr=None, is_async=False, async_stats=False, epsilon=1e-2, stats_decay=0.95, blockdiag_bias=False, channel_fac=False, factored_damping=False, approxT2=False, use_float64=False, weight_decay_dict={},max_grad_norm=0.5):
|
||||
self.max_grad_norm = max_grad_norm
|
||||
self._lr = learning_rate
|
||||
|
@@ -130,27 +130,60 @@ class ClipRewardEnv(gym.RewardWrapper):
|
||||
"""Bin reward to {+1, 0, -1} by its sign."""
|
||||
return np.sign(reward)
|
||||
|
||||
class WarpFrame(gym.ObservationWrapper):
|
||||
def __init__(self, env, width=84, height=84, grayscale=True):
|
||||
"""Warp frames to 84x84 as done in the Nature paper and later work."""
|
||||
gym.ObservationWrapper.__init__(self, env)
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.grayscale = grayscale
|
||||
if self.grayscale:
|
||||
self.observation_space = spaces.Box(low=0, high=255,
|
||||
shape=(self.height, self.width, 1), dtype=np.uint8)
|
||||
else:
|
||||
self.observation_space = spaces.Box(low=0, high=255,
|
||||
shape=(self.height, self.width, 3), dtype=np.uint8)
|
||||
|
||||
def observation(self, frame):
|
||||
if self.grayscale:
|
||||
class WarpFrame(gym.ObservationWrapper):
|
||||
def __init__(self, env, width=84, height=84, grayscale=True, dict_space_key=None):
|
||||
"""
|
||||
Warp frames to 84x84 as done in the Nature paper and later work.
|
||||
|
||||
If the environment uses dictionary observations, `dict_space_key` can be specified which indicates which
|
||||
observation should be warped.
|
||||
"""
|
||||
super().__init__(env)
|
||||
self._width = width
|
||||
self._height = height
|
||||
self._grayscale = grayscale
|
||||
self._key = dict_space_key
|
||||
if self._grayscale:
|
||||
num_colors = 1
|
||||
else:
|
||||
num_colors = 3
|
||||
|
||||
new_space = gym.spaces.Box(
|
||||
low=0,
|
||||
high=255,
|
||||
shape=(self._height, self._width, num_colors),
|
||||
dtype=np.uint8,
|
||||
)
|
||||
if self._key is None:
|
||||
original_space = self.observation_space
|
||||
self.observation_space = new_space
|
||||
else:
|
||||
original_space = self.observation_space.spaces[self._key]
|
||||
self.observation_space.spaces[self._key] = new_space
|
||||
assert original_space.dtype == np.uint8 and len(original_space.shape) == 3
|
||||
|
||||
def observation(self, obs):
|
||||
if self._key is None:
|
||||
frame = obs
|
||||
else:
|
||||
frame = obs[self._key]
|
||||
|
||||
if self._grayscale:
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
||||
frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA)
|
||||
if self.grayscale:
|
||||
frame = cv2.resize(
|
||||
frame, (self._width, self._height), interpolation=cv2.INTER_AREA
|
||||
)
|
||||
if self._grayscale:
|
||||
frame = np.expand_dims(frame, -1)
|
||||
return frame
|
||||
|
||||
if self._key is None:
|
||||
obs = frame
|
||||
else:
|
||||
obs = obs.copy()
|
||||
obs[self._key] = frame
|
||||
return obs
|
||||
|
||||
|
||||
class FrameStack(gym.Wrapper):
|
||||
def __init__(self, env, k):
|
||||
|
@@ -17,21 +17,26 @@ from baselines.common.atari_wrappers import make_atari, wrap_deepmind
|
||||
from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv
|
||||
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
|
||||
from baselines.common import retro_wrappers
|
||||
from baselines.common.wrappers import ClipActionsWrapper
|
||||
|
||||
def make_vec_env(env_id, env_type, num_env, seed,
|
||||
wrapper_kwargs=None,
|
||||
env_kwargs=None,
|
||||
start_index=0,
|
||||
reward_scale=1.0,
|
||||
flatten_dict_observations=True,
|
||||
gamestate=None):
|
||||
gamestate=None,
|
||||
initializer=None,
|
||||
force_dummy=False):
|
||||
"""
|
||||
Create a wrapped, monitored SubprocVecEnv for Atari and MuJoCo.
|
||||
"""
|
||||
wrapper_kwargs = wrapper_kwargs or {}
|
||||
env_kwargs = env_kwargs or {}
|
||||
mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0
|
||||
seed = seed + 10000 * mpi_rank if seed is not None else None
|
||||
logger_dir = logger.get_dir()
|
||||
def make_thunk(rank):
|
||||
def make_thunk(rank, initializer=None):
|
||||
return lambda: make_env(
|
||||
env_id=env_id,
|
||||
env_type=env_type,
|
||||
@@ -42,18 +47,30 @@ def make_vec_env(env_id, env_type, num_env, seed,
|
||||
gamestate=gamestate,
|
||||
flatten_dict_observations=flatten_dict_observations,
|
||||
wrapper_kwargs=wrapper_kwargs,
|
||||
logger_dir=logger_dir
|
||||
env_kwargs=env_kwargs,
|
||||
logger_dir=logger_dir,
|
||||
initializer=initializer
|
||||
)
|
||||
|
||||
set_global_seeds(seed)
|
||||
if num_env > 1:
|
||||
return SubprocVecEnv([make_thunk(i + start_index) for i in range(num_env)])
|
||||
if not force_dummy and num_env > 1:
|
||||
return SubprocVecEnv([make_thunk(i + start_index, initializer=initializer) for i in range(num_env)])
|
||||
else:
|
||||
return DummyVecEnv([make_thunk(start_index)])
|
||||
return DummyVecEnv([make_thunk(i + start_index, initializer=None) for i in range(num_env)])
|
||||
|
||||
|
||||
def make_env(env_id, env_type, mpi_rank=0, subrank=0, seed=None, reward_scale=1.0, gamestate=None, flatten_dict_observations=True, wrapper_kwargs=None, logger_dir=None):
|
||||
def make_env(env_id, env_type, mpi_rank=0, subrank=0, seed=None, reward_scale=1.0, gamestate=None, flatten_dict_observations=True, wrapper_kwargs=None, env_kwargs=None, logger_dir=None, initializer=None):
|
||||
if initializer is not None:
|
||||
initializer(mpi_rank=mpi_rank, subrank=subrank)
|
||||
|
||||
wrapper_kwargs = wrapper_kwargs or {}
|
||||
env_kwargs = env_kwargs or {}
|
||||
if ':' in env_id:
|
||||
import re
|
||||
import importlib
|
||||
module_name = re.sub(':.*','',env_id)
|
||||
env_id = re.sub('.*:', '', env_id)
|
||||
importlib.import_module(module_name)
|
||||
if env_type == 'atari':
|
||||
env = make_atari(env_id)
|
||||
elif env_type == 'retro':
|
||||
@@ -61,7 +78,7 @@ def make_env(env_id, env_type, mpi_rank=0, subrank=0, seed=None, reward_scale=1.
|
||||
gamestate = gamestate or retro.State.DEFAULT
|
||||
env = retro_wrappers.make_retro(game=env_id, max_episode_steps=10000, use_restricted_actions=retro.Actions.DISCRETE, state=gamestate)
|
||||
else:
|
||||
env = gym.make(env_id)
|
||||
env = gym.make(env_id, **env_kwargs)
|
||||
|
||||
if flatten_dict_observations and isinstance(env.observation_space, gym.spaces.Dict):
|
||||
keys = env.observation_space.spaces.keys()
|
||||
@@ -72,6 +89,7 @@ def make_env(env_id, env_type, mpi_rank=0, subrank=0, seed=None, reward_scale=1.
|
||||
logger_dir and os.path.join(logger_dir, str(mpi_rank) + '.' + str(subrank)),
|
||||
allow_early_resets=True)
|
||||
|
||||
|
||||
if env_type == 'atari':
|
||||
env = wrap_deepmind(env, **wrapper_kwargs)
|
||||
elif env_type == 'retro':
|
||||
@@ -79,6 +97,9 @@ def make_env(env_id, env_type, mpi_rank=0, subrank=0, seed=None, reward_scale=1.
|
||||
wrapper_kwargs['frame_stack'] = 1
|
||||
env = retro_wrappers.wrap_deepmind_retro(env, **wrapper_kwargs)
|
||||
|
||||
if isinstance(env.action_space, gym.spaces.Box):
|
||||
env = ClipActionsWrapper(env)
|
||||
|
||||
if reward_scale != 1:
|
||||
env = retro_wrappers.RewardScaler(env, reward_scale)
|
||||
|
||||
|
@@ -3,7 +3,6 @@ import tensorflow as tf
|
||||
from baselines.a2c import utils
|
||||
from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch
|
||||
from baselines.common.mpi_running_mean_std import RunningMeanStd
|
||||
import tensorflow.contrib.layers as layers
|
||||
|
||||
mapping = {}
|
||||
|
||||
@@ -26,6 +25,51 @@ def nature_cnn(unscaled_images, **conv_kwargs):
|
||||
h3 = conv_to_fc(h3)
|
||||
return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
|
||||
|
||||
def build_impala_cnn(unscaled_images, depths=[16,32,32], **conv_kwargs):
|
||||
"""
|
||||
Model used in the paper "IMPALA: Scalable Distributed Deep-RL with
|
||||
Importance Weighted Actor-Learner Architectures" https://arxiv.org/abs/1802.01561
|
||||
"""
|
||||
|
||||
layer_num = 0
|
||||
|
||||
def get_layer_num_str():
|
||||
nonlocal layer_num
|
||||
num_str = str(layer_num)
|
||||
layer_num += 1
|
||||
return num_str
|
||||
|
||||
def conv_layer(out, depth):
|
||||
return tf.layers.conv2d(out, depth, 3, padding='same', name='layer_' + get_layer_num_str())
|
||||
|
||||
def residual_block(inputs):
|
||||
depth = inputs.get_shape()[-1].value
|
||||
|
||||
out = tf.nn.relu(inputs)
|
||||
|
||||
out = conv_layer(out, depth)
|
||||
out = tf.nn.relu(out)
|
||||
out = conv_layer(out, depth)
|
||||
return out + inputs
|
||||
|
||||
def conv_sequence(inputs, depth):
|
||||
out = conv_layer(inputs, depth)
|
||||
out = tf.layers.max_pooling2d(out, pool_size=3, strides=2, padding='same')
|
||||
out = residual_block(out)
|
||||
out = residual_block(out)
|
||||
return out
|
||||
|
||||
out = tf.cast(unscaled_images, tf.float32) / 255.
|
||||
|
||||
for depth in depths:
|
||||
out = conv_sequence(out, depth)
|
||||
|
||||
out = tf.layers.flatten(out)
|
||||
out = tf.nn.relu(out)
|
||||
out = tf.layers.dense(out, 256, activation=tf.nn.relu, name='layer_' + get_layer_num_str())
|
||||
|
||||
return out
|
||||
|
||||
|
||||
@register("mlp")
|
||||
def mlp(num_layers=2, num_hidden=64, activation=tf.tanh, layer_norm=False):
|
||||
@@ -65,6 +109,11 @@ def cnn(**conv_kwargs):
|
||||
return nature_cnn(X, **conv_kwargs)
|
||||
return network_fn
|
||||
|
||||
@register("impala_cnn")
|
||||
def impala_cnn(**conv_kwargs):
|
||||
def network_fn(X):
|
||||
return build_impala_cnn(X)
|
||||
return network_fn
|
||||
|
||||
@register("cnn_small")
|
||||
def cnn_small(**conv_kwargs):
|
||||
@@ -79,7 +128,6 @@ def cnn_small(**conv_kwargs):
|
||||
return h
|
||||
return network_fn
|
||||
|
||||
|
||||
@register("lstm")
|
||||
def lstm(nlstm=128, layer_norm=False):
|
||||
"""
|
||||
@@ -136,12 +184,12 @@ def lstm(nlstm=128, layer_norm=False):
|
||||
|
||||
|
||||
@register("cnn_lstm")
|
||||
def cnn_lstm(nlstm=128, layer_norm=False, **conv_kwargs):
|
||||
def cnn_lstm(nlstm=128, layer_norm=False, conv_fn=nature_cnn, **conv_kwargs):
|
||||
def network_fn(X, nenv=1):
|
||||
nbatch = X.shape[0]
|
||||
nsteps = nbatch // nenv
|
||||
|
||||
h = nature_cnn(X, **conv_kwargs)
|
||||
h = conv_fn(X, **conv_kwargs)
|
||||
|
||||
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
|
||||
S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states
|
||||
@@ -161,6 +209,9 @@ def cnn_lstm(nlstm=128, layer_norm=False, **conv_kwargs):
|
||||
|
||||
return network_fn
|
||||
|
||||
@register("impala_cnn_lstm")
|
||||
def impala_cnn_lstm():
|
||||
return cnn_lstm(nlstm=256, conv_fn=build_impala_cnn)
|
||||
|
||||
@register("cnn_lnlstm")
|
||||
def cnn_lnlstm(nlstm=128, **conv_kwargs):
|
||||
@@ -187,7 +238,7 @@ def conv_only(convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], **conv_kwargs):
|
||||
out = tf.cast(X, tf.float32) / 255.
|
||||
with tf.variable_scope("convnet"):
|
||||
for num_outputs, kernel_size, stride in convs:
|
||||
out = layers.convolution2d(out,
|
||||
out = tf.contrib.layers.convolution2d(out,
|
||||
num_outputs=num_outputs,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
|
@@ -2,6 +2,7 @@ import numpy as np
|
||||
import tensorflow as tf
|
||||
from baselines.common import tf_util as U
|
||||
from baselines.common.tests.test_with_mpi import with_mpi
|
||||
from baselines import logger
|
||||
try:
|
||||
from mpi4py import MPI
|
||||
except ImportError:
|
||||
@@ -9,22 +10,34 @@ except ImportError:
|
||||
|
||||
class MpiAdamOptimizer(tf.train.AdamOptimizer):
|
||||
"""Adam optimizer that averages gradients across mpi processes."""
|
||||
def __init__(self, comm, **kwargs):
|
||||
def __init__(self, comm, grad_clip=None, mpi_rank_weight=1, **kwargs):
|
||||
self.comm = comm
|
||||
self.grad_clip = grad_clip
|
||||
self.mpi_rank_weight = mpi_rank_weight
|
||||
tf.train.AdamOptimizer.__init__(self, **kwargs)
|
||||
def compute_gradients(self, loss, var_list, **kwargs):
|
||||
grads_and_vars = tf.train.AdamOptimizer.compute_gradients(self, loss, var_list, **kwargs)
|
||||
grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None]
|
||||
flat_grad = tf.concat([tf.reshape(g, (-1,)) for g, v in grads_and_vars], axis=0)
|
||||
flat_grad = tf.concat([tf.reshape(g, (-1,)) for g, v in grads_and_vars], axis=0) * self.mpi_rank_weight
|
||||
shapes = [v.shape.as_list() for g, v in grads_and_vars]
|
||||
sizes = [int(np.prod(s)) for s in shapes]
|
||||
num_tasks = self.comm.Get_size()
|
||||
|
||||
total_weight = np.zeros(1, np.float32)
|
||||
self.comm.Allreduce(np.array([self.mpi_rank_weight], dtype=np.float32), total_weight, op=MPI.SUM)
|
||||
total_weight = total_weight[0]
|
||||
|
||||
buf = np.zeros(sum(sizes), np.float32)
|
||||
countholder = [0] # Counts how many times _collect_grads has been called
|
||||
stat = tf.reduce_sum(grads_and_vars[0][1]) # sum of first variable
|
||||
def _collect_grads(flat_grad, np_stat):
|
||||
if self.grad_clip is not None:
|
||||
gradnorm = np.linalg.norm(flat_grad)
|
||||
if gradnorm > 1:
|
||||
flat_grad /= gradnorm
|
||||
logger.logkv_mean('gradnorm', gradnorm)
|
||||
logger.logkv_mean('gradclipfrac', float(gradnorm > 1))
|
||||
self.comm.Allreduce(flat_grad, buf, op=MPI.SUM)
|
||||
np.divide(buf, float(num_tasks), out=buf)
|
||||
np.divide(buf, float(total_weight), out=buf)
|
||||
if countholder[0] % 100 == 0:
|
||||
check_synced(np_stat, self.comm)
|
||||
countholder[0] += 1
|
||||
@@ -51,8 +64,8 @@ def check_synced(localval, comm=None):
|
||||
comm = comm or MPI.COMM_WORLD
|
||||
vals = comm.gather(localval)
|
||||
if comm.rank == 0:
|
||||
assert all(val==vals[0] for val in vals[1:])
|
||||
|
||||
assert all(val==vals[0] for val in vals[1:]),\
|
||||
f'MpiAdamOptimizer detected that different workers have different weights: {vals}'
|
||||
|
||||
@with_mpi(timeout=5)
|
||||
def test_nonfreeze():
|
||||
@@ -75,4 +88,3 @@ def test_nonfreeze():
|
||||
l,_ = sess.run([loss, update_op])
|
||||
print(i, l)
|
||||
losslist_ref.append(l)
|
||||
|
||||
|
@@ -90,6 +90,8 @@ def one_sided_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_
|
||||
sum_y *= interstep_decay
|
||||
count_y *= interstep_decay
|
||||
while True:
|
||||
if luoi >= len(xolds):
|
||||
break
|
||||
xold = xolds[luoi]
|
||||
if xold <= xnew:
|
||||
decay = np.exp(- (xnew - xold) / decay_period)
|
||||
@@ -98,8 +100,6 @@ def one_sided_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_
|
||||
luoi += 1
|
||||
else:
|
||||
break
|
||||
if luoi >= len(xolds):
|
||||
break
|
||||
sum_ys[i] = sum_y
|
||||
count_ys[i] = count_y
|
||||
|
||||
@@ -248,7 +248,10 @@ def plot_results(
|
||||
figsize=None,
|
||||
legend_outside=False,
|
||||
resample=0,
|
||||
smooth_step=1.0
|
||||
smooth_step=1.0,
|
||||
tiling='vertical',
|
||||
xlabel=None,
|
||||
ylabel=None
|
||||
):
|
||||
'''
|
||||
Plot multiple Results objects
|
||||
@@ -300,9 +303,23 @@ def plot_results(
|
||||
sk2r[splitkey].append(result)
|
||||
assert len(sk2r) > 0
|
||||
assert isinstance(resample, int), "0: don't resample. <integer>: that many samples"
|
||||
nrows = len(sk2r)
|
||||
ncols = 1
|
||||
figsize = figsize or (6, 6 * nrows)
|
||||
if tiling == 'vertical' or tiling is None:
|
||||
nrows = len(sk2r)
|
||||
ncols = 1
|
||||
elif tiling == 'horizontal':
|
||||
ncols = len(sk2r)
|
||||
nrows = 1
|
||||
elif tiling == 'symmetric':
|
||||
import math
|
||||
N = len(sk2r)
|
||||
largest_divisor = 1
|
||||
for i in range(1, int(math.sqrt(N))+1):
|
||||
if N % i == 0:
|
||||
largest_divisor = i
|
||||
ncols = largest_divisor
|
||||
nrows = N // ncols
|
||||
figsize = figsize or (6 * ncols, 6 * nrows)
|
||||
|
||||
f, axarr = plt.subplots(nrows, ncols, sharex=False, squeeze=False, figsize=figsize)
|
||||
|
||||
groups = list(set(group_fn(result) for result in allresults))
|
||||
@@ -316,7 +333,9 @@ def plot_results(
|
||||
g2c = defaultdict(int)
|
||||
sresults = sk2r[sk]
|
||||
gresults = defaultdict(list)
|
||||
ax = axarr[isplit][0]
|
||||
idx_row = isplit // ncols
|
||||
idx_col = isplit % ncols
|
||||
ax = axarr[idx_row][idx_col]
|
||||
for result in sresults:
|
||||
group = group_fn(result)
|
||||
g2c[group] += 1
|
||||
@@ -355,7 +374,7 @@ def plot_results(
|
||||
ymean = np.mean(ys, axis=0)
|
||||
ystd = np.std(ys, axis=0)
|
||||
ystderr = ystd / np.sqrt(len(ys))
|
||||
l, = axarr[isplit][0].plot(usex, ymean, color=color)
|
||||
l, = axarr[idx_row][idx_col].plot(usex, ymean, color=color)
|
||||
g2l[group] = l
|
||||
if shaded_err:
|
||||
ax.fill_between(usex, ymean - ystderr, ymean + ystderr, color=color, alpha=.4)
|
||||
@@ -372,6 +391,17 @@ def plot_results(
|
||||
loc=2 if legend_outside else None,
|
||||
bbox_to_anchor=(1,1) if legend_outside else None)
|
||||
ax.set_title(sk)
|
||||
# add xlabels, but only to the bottom row
|
||||
if xlabel is not None:
|
||||
for ax in axarr[-1]:
|
||||
plt.sca(ax)
|
||||
plt.xlabel(xlabel)
|
||||
# add ylabels, but only to left column
|
||||
if ylabel is not None:
|
||||
for ax in axarr[:,0]:
|
||||
plt.sca(ax)
|
||||
plt.ylabel(ylabel)
|
||||
|
||||
return f, axarr
|
||||
|
||||
def regression_analysis(df):
|
||||
|
@@ -1,10 +1,13 @@
|
||||
from baselines.common import mpi_util
|
||||
from baselines import logger
|
||||
from baselines.common.tests.test_with_mpi import with_mpi
|
||||
from baselines.common import mpi_util
|
||||
try:
|
||||
from mpi4py import MPI
|
||||
except ImportError:
|
||||
MPI = None
|
||||
|
||||
@with_mpi()
|
||||
def test_mpi_weighted_mean():
|
||||
from mpi4py import MPI
|
||||
comm = MPI.COMM_WORLD
|
||||
with logger.scoped_configure(comm=comm):
|
||||
if comm.rank == 0:
|
||||
@@ -13,7 +16,6 @@ def test_mpi_weighted_mean():
|
||||
name2valcount = {'a' : (19, 1), 'c' : (42,3)}
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
d = mpi_util.mpi_weighted_mean(comm, name2valcount)
|
||||
correctval = {'a' : (10 * 2 + 19) / 3.0, 'b' : 20, 'c' : 42}
|
||||
if comm.rank == 0:
|
||||
|
@@ -0,0 +1,2 @@
|
||||
import os, pytest
|
||||
mark_slow = pytest.mark.skipif(not os.getenv('RUNSLOW'), reason='slow')
|
@@ -9,18 +9,16 @@ class FixedSequenceEnv(Env):
|
||||
n_actions=10,
|
||||
episode_len=100
|
||||
):
|
||||
self.np_random = np.random.RandomState()
|
||||
self.sequence = None
|
||||
|
||||
self.action_space = Discrete(n_actions)
|
||||
self.observation_space = Discrete(1)
|
||||
|
||||
self.np_random = np.random.RandomState(0)
|
||||
self.episode_len = episode_len
|
||||
self.sequence = [self.np_random.randint(0, self.action_space.n)
|
||||
for _ in range(self.episode_len)]
|
||||
self.time = 0
|
||||
|
||||
|
||||
def reset(self):
|
||||
if self.sequence is None:
|
||||
self.sequence = [self.np_random.randint(0, self.action_space.n-1) for _ in range(self.episode_len)]
|
||||
self.time = 0
|
||||
return 0
|
||||
|
||||
@@ -29,7 +27,6 @@ class FixedSequenceEnv(Env):
|
||||
self._choose_next_state()
|
||||
done = False
|
||||
if self.episode_len and self.time >= self.episode_len:
|
||||
rew = 0
|
||||
done = True
|
||||
|
||||
return 0, rew, done, {}
|
||||
|
@@ -2,43 +2,45 @@ import numpy as np
|
||||
from abc import abstractmethod
|
||||
from gym import Env
|
||||
from gym.spaces import MultiDiscrete, Discrete, Box
|
||||
|
||||
from collections import deque
|
||||
|
||||
class IdentityEnv(Env):
|
||||
def __init__(
|
||||
self,
|
||||
episode_len=None
|
||||
episode_len=None,
|
||||
delay=0,
|
||||
zero_first_rewards=True
|
||||
):
|
||||
|
||||
self.observation_space = self.action_space
|
||||
self.episode_len = episode_len
|
||||
self.time = 0
|
||||
self.reset()
|
||||
self.delay = delay
|
||||
self.zero_first_rewards = zero_first_rewards
|
||||
self.q = deque(maxlen=delay+1)
|
||||
|
||||
def reset(self):
|
||||
self._choose_next_state()
|
||||
self.q.clear()
|
||||
for _ in range(self.delay + 1):
|
||||
self.q.append(self.action_space.sample())
|
||||
self.time = 0
|
||||
|
||||
return self.state
|
||||
return self.q[-1]
|
||||
|
||||
def step(self, actions):
|
||||
rew = self._get_reward(actions)
|
||||
self._choose_next_state()
|
||||
done = False
|
||||
if self.episode_len and self.time >= self.episode_len:
|
||||
done = True
|
||||
|
||||
return self.state, rew, done, {}
|
||||
rew = self._get_reward(self.q.popleft(), actions)
|
||||
if self.zero_first_rewards and self.time < self.delay:
|
||||
rew = 0
|
||||
self.q.append(self.action_space.sample())
|
||||
self.time += 1
|
||||
done = self.episode_len is not None and self.time >= self.episode_len
|
||||
return self.q[-1], rew, done, {}
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.action_space.seed(seed)
|
||||
|
||||
def _choose_next_state(self):
|
||||
self.state = self.action_space.sample()
|
||||
self.time += 1
|
||||
|
||||
@abstractmethod
|
||||
def _get_reward(self, actions):
|
||||
def _get_reward(self, state, actions):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
@@ -47,26 +49,29 @@ class DiscreteIdentityEnv(IdentityEnv):
|
||||
self,
|
||||
dim,
|
||||
episode_len=None,
|
||||
delay=0,
|
||||
zero_first_rewards=True
|
||||
):
|
||||
|
||||
self.action_space = Discrete(dim)
|
||||
super().__init__(episode_len=episode_len)
|
||||
super().__init__(episode_len=episode_len, delay=delay, zero_first_rewards=zero_first_rewards)
|
||||
|
||||
def _get_reward(self, actions):
|
||||
return 1 if self.state == actions else 0
|
||||
def _get_reward(self, state, actions):
|
||||
return 1 if state == actions else 0
|
||||
|
||||
class MultiDiscreteIdentityEnv(IdentityEnv):
|
||||
def __init__(
|
||||
self,
|
||||
dims,
|
||||
episode_len=None,
|
||||
delay=0,
|
||||
):
|
||||
|
||||
self.action_space = MultiDiscrete(dims)
|
||||
super().__init__(episode_len=episode_len)
|
||||
super().__init__(episode_len=episode_len, delay=delay)
|
||||
|
||||
def _get_reward(self, actions):
|
||||
return 1 if all(self.state == actions) else 0
|
||||
def _get_reward(self, state, actions):
|
||||
return 1 if all(state == actions) else 0
|
||||
|
||||
|
||||
class BoxIdentityEnv(IdentityEnv):
|
||||
@@ -79,7 +84,7 @@ class BoxIdentityEnv(IdentityEnv):
|
||||
self.action_space = Box(low=-1.0, high=1.0, shape=shape, dtype=np.float32)
|
||||
super().__init__(episode_len=episode_len)
|
||||
|
||||
def _get_reward(self, actions):
|
||||
diff = actions - self.state
|
||||
def _get_reward(self, state, actions):
|
||||
diff = actions - state
|
||||
diff = diff[:]
|
||||
return -0.5 * np.dot(diff, diff)
|
||||
|
36
baselines/common/tests/envs/identity_env_test.py
Normal file
36
baselines/common/tests/envs/identity_env_test.py
Normal file
@@ -0,0 +1,36 @@
|
||||
from baselines.common.tests.envs.identity_env import DiscreteIdentityEnv
|
||||
|
||||
|
||||
def test_discrete_nodelay():
|
||||
nsteps = 100
|
||||
eplen = 50
|
||||
env = DiscreteIdentityEnv(10, episode_len=eplen)
|
||||
ob = env.reset()
|
||||
for t in range(nsteps):
|
||||
action = env.action_space.sample()
|
||||
next_ob, rew, done, info = env.step(action)
|
||||
assert rew == (1 if action == ob else 0)
|
||||
if (t + 1) % eplen == 0:
|
||||
assert done
|
||||
next_ob = env.reset()
|
||||
else:
|
||||
assert not done
|
||||
ob = next_ob
|
||||
|
||||
def test_discrete_delay1():
|
||||
eplen = 50
|
||||
env = DiscreteIdentityEnv(10, episode_len=eplen, delay=1)
|
||||
ob = env.reset()
|
||||
prev_ob = None
|
||||
for t in range(eplen):
|
||||
action = env.action_space.sample()
|
||||
next_ob, rew, done, info = env.step(action)
|
||||
if t > 0:
|
||||
assert rew == (1 if action == prev_ob else 0)
|
||||
else:
|
||||
assert rew == 0
|
||||
prev_ob = ob
|
||||
ob = next_ob
|
||||
if t < eplen - 1:
|
||||
assert not done
|
||||
assert done
|
@@ -3,6 +3,7 @@ import gym
|
||||
|
||||
from baselines.run import get_learn_function
|
||||
from baselines.common.tests.util import reward_per_episode_test
|
||||
from baselines.common.tests import mark_slow
|
||||
|
||||
common_kwargs = dict(
|
||||
total_timesteps=30000,
|
||||
@@ -20,7 +21,7 @@ learn_kwargs = {
|
||||
'trpo_mpi': {}
|
||||
}
|
||||
|
||||
@pytest.mark.slow
|
||||
@mark_slow
|
||||
@pytest.mark.parametrize("alg", learn_kwargs.keys())
|
||||
def test_cartpole(alg):
|
||||
'''
|
||||
|
@@ -3,6 +3,7 @@ import gym
|
||||
|
||||
from baselines.run import get_learn_function
|
||||
from baselines.common.tests.util import reward_per_episode_test
|
||||
from baselines.common.tests import mark_slow
|
||||
|
||||
pytest.importorskip('mujoco_py')
|
||||
|
||||
@@ -15,7 +16,7 @@ learn_kwargs = {
|
||||
'her': dict(total_timesteps=2000)
|
||||
}
|
||||
|
||||
@pytest.mark.slow
|
||||
@mark_slow
|
||||
@pytest.mark.parametrize("alg", learn_kwargs.keys())
|
||||
def test_fetchreach(alg):
|
||||
'''
|
||||
|
@@ -3,6 +3,8 @@ from baselines.common.tests.envs.fixed_sequence_env import FixedSequenceEnv
|
||||
|
||||
from baselines.common.tests.util import simple_test
|
||||
from baselines.run import get_learn_function
|
||||
from baselines.common.tests import mark_slow
|
||||
|
||||
|
||||
common_kwargs = dict(
|
||||
seed=0,
|
||||
@@ -21,7 +23,7 @@ learn_kwargs = {
|
||||
alg_list = learn_kwargs.keys()
|
||||
rnn_list = ['lstm']
|
||||
|
||||
@pytest.mark.slow
|
||||
@mark_slow
|
||||
@pytest.mark.parametrize("alg", alg_list)
|
||||
@pytest.mark.parametrize("rnn", rnn_list)
|
||||
def test_fixed_sequence(alg, rnn):
|
||||
|
@@ -2,6 +2,7 @@ import pytest
|
||||
from baselines.common.tests.envs.identity_env import DiscreteIdentityEnv, BoxIdentityEnv, MultiDiscreteIdentityEnv
|
||||
from baselines.run import get_learn_function
|
||||
from baselines.common.tests.util import simple_test
|
||||
from baselines.common.tests import mark_slow
|
||||
|
||||
common_kwargs = dict(
|
||||
total_timesteps=30000,
|
||||
@@ -24,7 +25,7 @@ algos_disc = ['a2c', 'acktr', 'deepq', 'ppo2', 'trpo_mpi']
|
||||
algos_multidisc = ['a2c', 'acktr', 'ppo2', 'trpo_mpi']
|
||||
algos_cont = ['a2c', 'acktr', 'ddpg', 'ppo2', 'trpo_mpi']
|
||||
|
||||
@pytest.mark.slow
|
||||
@mark_slow
|
||||
@pytest.mark.parametrize("alg", algos_disc)
|
||||
def test_discrete_identity(alg):
|
||||
'''
|
||||
@@ -39,7 +40,7 @@ def test_discrete_identity(alg):
|
||||
env_fn = lambda: DiscreteIdentityEnv(10, episode_len=100)
|
||||
simple_test(env_fn, learn_fn, 0.9)
|
||||
|
||||
@pytest.mark.slow
|
||||
@mark_slow
|
||||
@pytest.mark.parametrize("alg", algos_multidisc)
|
||||
def test_multidiscrete_identity(alg):
|
||||
'''
|
||||
@@ -54,7 +55,7 @@ def test_multidiscrete_identity(alg):
|
||||
env_fn = lambda: MultiDiscreteIdentityEnv((3,3), episode_len=100)
|
||||
simple_test(env_fn, learn_fn, 0.9)
|
||||
|
||||
@pytest.mark.slow
|
||||
@mark_slow
|
||||
@pytest.mark.parametrize("alg", algos_cont)
|
||||
def test_continuous_identity(alg):
|
||||
'''
|
||||
|
@@ -4,7 +4,7 @@ import pytest
|
||||
from baselines.common.tests.envs.mnist_env import MnistEnv
|
||||
from baselines.common.tests.util import simple_test
|
||||
from baselines.run import get_learn_function
|
||||
|
||||
from baselines.common.tests import mark_slow
|
||||
|
||||
# TODO investigate a2c and ppo2 failures - is it due to bad hyperparameters for this problem?
|
||||
# GitHub issue https://github.com/openai/baselines/issues/189
|
||||
@@ -28,7 +28,7 @@ learn_args = {
|
||||
#tests pass, but are too slow on travis. Same algorithms are covered
|
||||
# by other tests with less compute-hungry nn's and by benchmarks
|
||||
@pytest.mark.skip
|
||||
@pytest.mark.slow
|
||||
@mark_slow
|
||||
@pytest.mark.parametrize("alg", learn_args.keys())
|
||||
def test_mnist(alg):
|
||||
'''
|
||||
|
17
baselines/common/tests/test_plot_util.py
Normal file
17
baselines/common/tests/test_plot_util.py
Normal file
@@ -0,0 +1,17 @@
|
||||
# smoke tests of plot_util
|
||||
from baselines.common import plot_util as pu
|
||||
from baselines.common.tests.util import smoketest
|
||||
|
||||
|
||||
def test_plot_util():
|
||||
nruns = 4
|
||||
logdirs = [smoketest('--alg=ppo2 --env=CartPole-v0 --num_timesteps=10000') for _ in range(nruns)]
|
||||
data = pu.load_results(logdirs)
|
||||
assert len(data) == 4
|
||||
|
||||
_, axes = pu.plot_results(data[:1]); assert len(axes) == 1
|
||||
_, axes = pu.plot_results(data, tiling='vertical'); assert axes.shape==(4,1)
|
||||
_, axes = pu.plot_results(data, tiling='horizontal'); assert axes.shape==(1,4)
|
||||
_, axes = pu.plot_results(data, tiling='symmetric'); assert axes.shape==(2,2)
|
||||
_, axes = pu.plot_results(data, split_fn=lambda _: ''); assert len(axes) == 1
|
||||
|
@@ -4,6 +4,7 @@ import subprocess
|
||||
import cloudpickle
|
||||
import base64
|
||||
import pytest
|
||||
from functools import wraps
|
||||
|
||||
try:
|
||||
from mpi4py import MPI
|
||||
@@ -12,6 +13,7 @@ except ImportError:
|
||||
|
||||
def with_mpi(nproc=2, timeout=30, skip_if_no_mpi=True):
|
||||
def outer_thunk(fn):
|
||||
@wraps(fn)
|
||||
def thunk(*args, **kwargs):
|
||||
serialized_fn = base64.b64encode(cloudpickle.dumps(lambda: fn(*args, **kwargs)))
|
||||
subprocess.check_call([
|
||||
|
@@ -5,6 +5,12 @@ from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
|
||||
N_TRIALS = 10000
|
||||
N_EPISODES = 100
|
||||
|
||||
_sess_config = tf.ConfigProto(
|
||||
allow_soft_placement=True,
|
||||
intra_op_parallelism_threads=1,
|
||||
inter_op_parallelism_threads=1
|
||||
)
|
||||
|
||||
def simple_test(env_fn, learn_fn, min_reward_fraction, n_trials=N_TRIALS):
|
||||
def seeded_env_fn():
|
||||
env = env_fn()
|
||||
@@ -13,7 +19,7 @@ def simple_test(env_fn, learn_fn, min_reward_fraction, n_trials=N_TRIALS):
|
||||
|
||||
np.random.seed(0)
|
||||
env = DummyVecEnv([seeded_env_fn])
|
||||
with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(allow_soft_placement=True)).as_default():
|
||||
with tf.Graph().as_default(), tf.Session(config=_sess_config).as_default():
|
||||
tf.set_random_seed(0)
|
||||
model = learn_fn(env)
|
||||
sum_rew = 0
|
||||
@@ -34,7 +40,7 @@ def simple_test(env_fn, learn_fn, min_reward_fraction, n_trials=N_TRIALS):
|
||||
|
||||
def reward_per_episode_test(env_fn, learn_fn, min_avg_reward, n_trials=N_EPISODES):
|
||||
env = DummyVecEnv([env_fn])
|
||||
with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(allow_soft_placement=True)).as_default():
|
||||
with tf.Graph().as_default(), tf.Session(config=_sess_config).as_default():
|
||||
model = learn_fn(env)
|
||||
N_TRIALS = 100
|
||||
observations, actions, rewards = rollout(env, model, N_TRIALS)
|
||||
@@ -71,3 +77,16 @@ def rollout(env, model, n_trials):
|
||||
observations.append(episode_obs)
|
||||
return observations, actions, rewards
|
||||
|
||||
|
||||
def smoketest(argstr, **kwargs):
|
||||
import tempfile
|
||||
import subprocess
|
||||
import os
|
||||
argstr = 'python -m baselines.run ' + argstr
|
||||
for key, value in kwargs:
|
||||
argstr += ' --{}={}'.format(key, value)
|
||||
tempdir = tempfile.mkdtemp()
|
||||
env = os.environ.copy()
|
||||
env['OPENAI_LOGDIR'] = tempdir
|
||||
subprocess.run(argstr.split(' '), env=env)
|
||||
return tempdir
|
||||
|
@@ -145,8 +145,7 @@ class VecEnvWrapper(VecEnv):
|
||||
|
||||
def __init__(self, venv, observation_space=None, action_space=None):
|
||||
self.venv = venv
|
||||
VecEnv.__init__(self,
|
||||
num_envs=venv.num_envs,
|
||||
super().__init__(num_envs=venv.num_envs,
|
||||
observation_space=observation_space or venv.observation_space,
|
||||
action_space=action_space or venv.action_space)
|
||||
|
||||
@@ -170,6 +169,11 @@ class VecEnvWrapper(VecEnv):
|
||||
def get_images(self):
|
||||
return self.venv.get_images()
|
||||
|
||||
def __getattr__(self, name):
|
||||
if name.startswith('_'):
|
||||
raise AttributeError("attempted to get missing private attribute '{}'".format(name))
|
||||
return getattr(self.venv, name)
|
||||
|
||||
class VecEnvObservationWrapper(VecEnvWrapper):
|
||||
@abstractmethod
|
||||
def process(self, obs):
|
||||
|
@@ -5,16 +5,18 @@ import time
|
||||
from collections import deque
|
||||
|
||||
class VecMonitor(VecEnvWrapper):
|
||||
def __init__(self, venv, filename=None, keep_buf=0):
|
||||
def __init__(self, venv, filename=None, keep_buf=0, info_keywords=()):
|
||||
VecEnvWrapper.__init__(self, venv)
|
||||
self.eprets = None
|
||||
self.eplens = None
|
||||
self.epcount = 0
|
||||
self.tstart = time.time()
|
||||
if filename:
|
||||
self.results_writer = ResultsWriter(filename, header={'t_start': self.tstart})
|
||||
self.results_writer = ResultsWriter(filename, header={'t_start': self.tstart},
|
||||
extra_keys=info_keywords)
|
||||
else:
|
||||
self.results_writer = None
|
||||
self.info_keywords = info_keywords
|
||||
self.keep_buf = keep_buf
|
||||
if self.keep_buf:
|
||||
self.epret_buf = deque([], maxlen=keep_buf)
|
||||
@@ -30,11 +32,16 @@ class VecMonitor(VecEnvWrapper):
|
||||
obs, rews, dones, infos = self.venv.step_wait()
|
||||
self.eprets += rews
|
||||
self.eplens += 1
|
||||
newinfos = []
|
||||
for (i, (done, ret, eplen, info)) in enumerate(zip(dones, self.eprets, self.eplens, infos)):
|
||||
info = info.copy()
|
||||
if done:
|
||||
|
||||
newinfos = list(infos[:])
|
||||
for i in range(len(dones)):
|
||||
if dones[i]:
|
||||
info = infos[i].copy()
|
||||
ret = self.eprets[i]
|
||||
eplen = self.eplens[i]
|
||||
epinfo = {'r': ret, 'l': eplen, 't': round(time.time() - self.tstart, 6)}
|
||||
for k in self.info_keywords:
|
||||
epinfo[k] = info[k]
|
||||
info['episode'] = epinfo
|
||||
if self.keep_buf:
|
||||
self.epret_buf.append(ret)
|
||||
@@ -44,6 +51,5 @@ class VecMonitor(VecEnvWrapper):
|
||||
self.eplens[i] = 0
|
||||
if self.results_writer:
|
||||
self.results_writer.write_row(epinfo)
|
||||
newinfos.append(info)
|
||||
|
||||
newinfos[i] = info
|
||||
return obs, rews, dones, newinfos
|
||||
|
@@ -1,5 +1,4 @@
|
||||
from . import VecEnvWrapper
|
||||
from baselines.common.running_mean_std import TfRunningMeanStd, RunningMeanStd
|
||||
import numpy as np
|
||||
|
||||
class VecNormalize(VecEnvWrapper):
|
||||
@@ -11,9 +10,11 @@ class VecNormalize(VecEnvWrapper):
|
||||
def __init__(self, venv, ob=True, ret=True, clipob=10., cliprew=10., gamma=0.99, epsilon=1e-8, use_tf=False):
|
||||
VecEnvWrapper.__init__(self, venv)
|
||||
if use_tf:
|
||||
from baselines.common.running_mean_std import TfRunningMeanStd
|
||||
self.ob_rms = TfRunningMeanStd(shape=self.observation_space.shape, scope='ob_rms') if ob else None
|
||||
self.ret_rms = TfRunningMeanStd(shape=(), scope='ret_rms') if ret else None
|
||||
else:
|
||||
from baselines.common.running_mean_std import RunningMeanStd
|
||||
self.ob_rms = RunningMeanStd(shape=self.observation_space.shape) if ob else None
|
||||
self.ret_rms = RunningMeanStd(shape=()) if ret else None
|
||||
self.clipob = clipob
|
||||
|
@@ -1,6 +1,5 @@
|
||||
from .vec_env import VecEnvObservationWrapper
|
||||
|
||||
|
||||
class VecExtractDictObs(VecEnvObservationWrapper):
|
||||
def __init__(self, venv, key):
|
||||
self.key = key
|
||||
@@ -8,4 +7,4 @@ class VecExtractDictObs(VecEnvObservationWrapper):
|
||||
observation_space=venv.observation_space.spaces[self.key])
|
||||
|
||||
def process(self, obs):
|
||||
return obs[self.key]
|
||||
return obs[self.key]
|
||||
|
@@ -16,4 +16,14 @@ class TimeLimit(gym.Wrapper):
|
||||
|
||||
def reset(self, **kwargs):
|
||||
self._elapsed_steps = 0
|
||||
return self.env.reset(**kwargs)
|
||||
return self.env.reset(**kwargs)
|
||||
|
||||
class ClipActionsWrapper(gym.Wrapper):
|
||||
def step(self, action):
|
||||
import numpy as np
|
||||
action = np.nan_to_num(action)
|
||||
action = np.clip(action, self.action_space.low, self.action_space.high)
|
||||
return self.env.step(action)
|
||||
|
||||
def reset(self, **kwargs):
|
||||
return self.env.reset(**kwargs)
|
||||
|
@@ -217,7 +217,9 @@ def learn(network, env,
|
||||
stats = agent.get_stats()
|
||||
combined_stats = stats.copy()
|
||||
combined_stats['rollout/return'] = np.mean(epoch_episode_rewards)
|
||||
combined_stats['rollout/return_std'] = np.std(epoch_episode_rewards)
|
||||
combined_stats['rollout/return_history'] = np.mean(episode_rewards_history)
|
||||
combined_stats['rollout/return_history_std'] = np.std(episode_rewards_history)
|
||||
combined_stats['rollout/episode_steps'] = np.mean(epoch_episode_steps)
|
||||
combined_stats['rollout/actions_mean'] = np.mean(epoch_actions)
|
||||
combined_stats['rollout/Q_mean'] = np.mean(epoch_qs)
|
||||
|
@@ -1,10 +1,6 @@
|
||||
from multiprocessing import Process
|
||||
import baselines.run
|
||||
|
||||
from baselines.common.tests.util import smoketest
|
||||
def _run(argstr):
|
||||
p = Process(target=baselines.run.main, args=('--alg=ddpg --env=Pendulum-v0 --num_timesteps=0 ' + argstr).split(' '))
|
||||
p.start()
|
||||
p.join()
|
||||
smoketest('--alg=ddpg --env=Pendulum-v0 --num_timesteps=0 ' + argstr)
|
||||
|
||||
def test_popart():
|
||||
_run('--normalize_returns=True --popart=True')
|
||||
|
@@ -38,8 +38,8 @@ class HumanOutputFormat(KVWriter, SeqWriter):
|
||||
# Create strings for printing
|
||||
key2str = {}
|
||||
for (key, val) in sorted(kvs.items()):
|
||||
if isinstance(val, float):
|
||||
valstr = '%-8.3g' % (val,)
|
||||
if hasattr(val, '__float__'):
|
||||
valstr = '%-8.3g' % val
|
||||
else:
|
||||
valstr = str(val)
|
||||
key2str[self._truncate(key)] = self._truncate(valstr)
|
||||
@@ -92,7 +92,6 @@ class JSONOutputFormat(KVWriter):
|
||||
def writekvs(self, kvs):
|
||||
for k, v in sorted(kvs.items()):
|
||||
if hasattr(v, 'dtype'):
|
||||
v = v.tolist()
|
||||
kvs[k] = float(v)
|
||||
self.file.write(json.dumps(kvs) + '\n')
|
||||
self.file.flush()
|
||||
@@ -361,7 +360,16 @@ class Logger(object):
|
||||
if isinstance(fmt, SeqWriter):
|
||||
fmt.writeseq(map(str, args))
|
||||
|
||||
def configure(dir=None, format_strs=None, comm=None):
|
||||
def get_rank_without_mpi_import():
|
||||
# check environment variables here instead of importing mpi4py
|
||||
# to avoid calling MPI_Init() when this module is imported
|
||||
for varname in ['PMI_RANK', 'OMPI_COMM_WORLD_RANK']:
|
||||
if varname in os.environ:
|
||||
return int(os.environ[varname])
|
||||
return 0
|
||||
|
||||
|
||||
def configure(dir=None, format_strs=None, comm=None, log_suffix=''):
|
||||
"""
|
||||
If comm is provided, average all numerical stats across that comm
|
||||
"""
|
||||
@@ -373,15 +381,9 @@ def configure(dir=None, format_strs=None, comm=None):
|
||||
assert isinstance(dir, str)
|
||||
os.makedirs(dir, exist_ok=True)
|
||||
|
||||
log_suffix = ''
|
||||
rank = 0
|
||||
# check environment variables here instead of importing mpi4py
|
||||
# to avoid calling MPI_Init() when this module is imported
|
||||
for varname in ['PMI_RANK', 'OMPI_COMM_WORLD_RANK']:
|
||||
if varname in os.environ:
|
||||
rank = int(os.environ[varname])
|
||||
rank = get_rank_without_mpi_import()
|
||||
if rank > 0:
|
||||
log_suffix = "-rank%03i" % rank
|
||||
log_suffix = log_suffix + "-rank%03i" % rank
|
||||
|
||||
if format_strs is None:
|
||||
if rank == 0:
|
||||
|
@@ -8,7 +8,7 @@ class MicrobatchedModel(Model):
|
||||
on the entire minibatch causes some overflow
|
||||
"""
|
||||
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
|
||||
nsteps, ent_coef, vf_coef, max_grad_norm, microbatch_size):
|
||||
nsteps, ent_coef, vf_coef, max_grad_norm, mpi_rank_weight, comm, microbatch_size):
|
||||
|
||||
self.nmicrobatches = nbatch_train // microbatch_size
|
||||
self.microbatch_size = microbatch_size
|
||||
@@ -23,7 +23,9 @@ class MicrobatchedModel(Model):
|
||||
nsteps=nsteps,
|
||||
ent_coef=ent_coef,
|
||||
vf_coef=vf_coef,
|
||||
max_grad_norm=max_grad_norm)
|
||||
max_grad_norm=max_grad_norm,
|
||||
mpi_rank_weight=mpi_rank_weight,
|
||||
comm=comm)
|
||||
|
||||
self.grads_ph = [tf.placeholder(dtype=g.dtype, shape=g.shape) for g in self.grads]
|
||||
grads_ph_and_vars = list(zip(self.grads_ph, self.var))
|
||||
|
@@ -25,9 +25,12 @@ class Model(object):
|
||||
- Save load the model
|
||||
"""
|
||||
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
|
||||
nsteps, ent_coef, vf_coef, max_grad_norm, microbatch_size=None):
|
||||
nsteps, ent_coef, vf_coef, max_grad_norm, mpi_rank_weight=1, comm=None, microbatch_size=None):
|
||||
self.sess = sess = get_session()
|
||||
|
||||
if MPI is not None and comm is None:
|
||||
comm = MPI.COMM_WORLD
|
||||
|
||||
with tf.variable_scope('ppo2_model', reuse=tf.AUTO_REUSE):
|
||||
# CREATE OUR TWO MODELS
|
||||
# act_model that is used for sampling
|
||||
@@ -91,8 +94,8 @@ class Model(object):
|
||||
# 1. Get the model parameters
|
||||
params = tf.trainable_variables('ppo2_model')
|
||||
# 2. Build our trainer
|
||||
if MPI is not None:
|
||||
self.trainer = MpiAdamOptimizer(MPI.COMM_WORLD, learning_rate=LR, epsilon=1e-5)
|
||||
if comm is not None and comm.Get_size() > 1:
|
||||
self.trainer = MpiAdamOptimizer(comm, learning_rate=LR, mpi_rank_weight=mpi_rank_weight, epsilon=1e-5)
|
||||
else:
|
||||
self.trainer = tf.train.AdamOptimizer(learning_rate=LR, epsilon=1e-5)
|
||||
# 3. Calculate the gradients
|
||||
@@ -125,7 +128,7 @@ class Model(object):
|
||||
initialize()
|
||||
global_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="")
|
||||
if MPI is not None:
|
||||
sync_from_root(sess, global_variables) #pylint: disable=E1101
|
||||
sync_from_root(sess, global_variables, comm=comm) #pylint: disable=E1101
|
||||
|
||||
def train(self, lr, cliprange, obs, returns, masks, actions, values, neglogpacs, states=None):
|
||||
# Here we calculate advantage A(s,a) = R + yV(s') - V(s)
|
||||
|
@@ -21,7 +21,7 @@ def constfn(val):
|
||||
def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2048, ent_coef=0.0, lr=3e-4,
|
||||
vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95,
|
||||
log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2,
|
||||
save_interval=0, load_path=None, model_fn=None, **network_kwargs):
|
||||
save_interval=0, load_path=None, model_fn=None, update_fn=None, init_fn=None, mpi_rank_weight=1, comm=None, **network_kwargs):
|
||||
'''
|
||||
Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347)
|
||||
|
||||
@@ -97,6 +97,7 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
|
||||
# Calculate the batch_size
|
||||
nbatch = nenvs * nsteps
|
||||
nbatch_train = nbatch // nminibatches
|
||||
is_mpi_root = (MPI is None or MPI.COMM_WORLD.Get_rank() == 0)
|
||||
|
||||
# Instantiate the model object (that creates act_model and train_model)
|
||||
if model_fn is None:
|
||||
@@ -105,7 +106,7 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
|
||||
|
||||
model = model_fn(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train,
|
||||
nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
|
||||
max_grad_norm=max_grad_norm)
|
||||
max_grad_norm=max_grad_norm, comm=comm, mpi_rank_weight=mpi_rank_weight)
|
||||
|
||||
if load_path is not None:
|
||||
model.load(load_path)
|
||||
@@ -118,6 +119,9 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
|
||||
if eval_env is not None:
|
||||
eval_epinfobuf = deque(maxlen=100)
|
||||
|
||||
if init_fn is not None:
|
||||
init_fn()
|
||||
|
||||
# Start total timer
|
||||
tfirststart = time.perf_counter()
|
||||
|
||||
@@ -131,11 +135,16 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
|
||||
lrnow = lr(frac)
|
||||
# Calculate the cliprange
|
||||
cliprangenow = cliprange(frac)
|
||||
|
||||
if update % log_interval == 0 and is_mpi_root: logger.info('Stepping environment...')
|
||||
|
||||
# Get minibatch
|
||||
obs, returns, masks, actions, values, neglogpacs, states, epinfos = runner.run() #pylint: disable=E0632
|
||||
if eval_env is not None:
|
||||
eval_obs, eval_returns, eval_masks, eval_actions, eval_values, eval_neglogpacs, eval_states, eval_epinfos = eval_runner.run() #pylint: disable=E0632
|
||||
|
||||
if update % log_interval == 0 and is_mpi_root: logger.info('Done.')
|
||||
|
||||
epinfobuf.extend(epinfos)
|
||||
if eval_env is not None:
|
||||
eval_epinfobuf.extend(eval_epinfos)
|
||||
@@ -176,31 +185,36 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
|
||||
tnow = time.perf_counter()
|
||||
# Calculate the fps (frame per second)
|
||||
fps = int(nbatch / (tnow - tstart))
|
||||
|
||||
if update_fn is not None:
|
||||
update_fn(update)
|
||||
|
||||
if update % log_interval == 0 or update == 1:
|
||||
# Calculates if value function is a good predicator of the returns (ev > 1)
|
||||
# or if it's just worse than predicting nothing (ev =< 0)
|
||||
ev = explained_variance(values, returns)
|
||||
logger.logkv("serial_timesteps", update*nsteps)
|
||||
logger.logkv("nupdates", update)
|
||||
logger.logkv("total_timesteps", update*nbatch)
|
||||
logger.logkv("misc/serial_timesteps", update*nsteps)
|
||||
logger.logkv("misc/nupdates", update)
|
||||
logger.logkv("misc/total_timesteps", update*nbatch)
|
||||
logger.logkv("fps", fps)
|
||||
logger.logkv("explained_variance", float(ev))
|
||||
logger.logkv("misc/explained_variance", float(ev))
|
||||
logger.logkv('eprewmean', safemean([epinfo['r'] for epinfo in epinfobuf]))
|
||||
logger.logkv('eplenmean', safemean([epinfo['l'] for epinfo in epinfobuf]))
|
||||
if eval_env is not None:
|
||||
logger.logkv('eval_eprewmean', safemean([epinfo['r'] for epinfo in eval_epinfobuf]) )
|
||||
logger.logkv('eval_eplenmean', safemean([epinfo['l'] for epinfo in eval_epinfobuf]) )
|
||||
logger.logkv('time_elapsed', tnow - tfirststart)
|
||||
logger.logkv('misc/time_elapsed', tnow - tfirststart)
|
||||
for (lossval, lossname) in zip(lossvals, model.loss_names):
|
||||
logger.logkv(lossname, lossval)
|
||||
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
|
||||
logger.dumpkvs()
|
||||
if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir() and (MPI is None or MPI.COMM_WORLD.Get_rank() == 0):
|
||||
logger.logkv('loss/' + lossname, lossval)
|
||||
|
||||
logger.dumpkvs()
|
||||
if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir() and is_mpi_root:
|
||||
checkdir = osp.join(logger.get_dir(), 'checkpoints')
|
||||
os.makedirs(checkdir, exist_ok=True)
|
||||
savepath = osp.join(checkdir, '%.5i'%update)
|
||||
print('Saving to', savepath)
|
||||
model.save(savepath)
|
||||
|
||||
return model
|
||||
# Avoid division error when calculate the mean (in our case if epinfo is empty returns np.nan, not return an error)
|
||||
def safemean(xs):
|
||||
|
Reference in New Issue
Block a user