exported rl-algs

This commit is contained in:
peter
2018-07-26 14:02:04 -07:00
parent f272969325
commit a6dca44115
41 changed files with 688 additions and 1559 deletions

2
.gitignore vendored
View File

@@ -34,5 +34,3 @@ src
.cache
MUJOCO_LOG.TXT

View File

@@ -10,5 +10,5 @@ install:
- docker build . -t baselines-test
script:
- flake8 --select=F baselines/common
- flake8 --select=F,E999 baselines/common baselines/trpo_mpi baselines/ppo2 baselines/a2c baselines/deepq baselines/acer
- docker run baselines-test pytest

View File

@@ -4,17 +4,21 @@ RUN apt-get -y update && apt-get -y install git wget python-dev python3-dev libo
ENV CODE_DIR /root/code
ENV VENV /root/venv
COPY . $CODE_DIR/baselines
RUN \
pip install virtualenv && \
virtualenv $VENV --python=python3 && \
. $VENV/bin/activate && \
cd $CODE_DIR && \
pip install --upgrade pip && \
pip install -e baselines && \
pip install pytest
pip install --upgrade pip
ENV PATH=$VENV/bin:$PATH
COPY . $CODE_DIR/baselines
WORKDIR $CODE_DIR/baselines
# Clean up pycache and pyc files
RUN rm -rf __pycache__ && \
find . -name "*.pyc" -delete && \
pip install -e .[test]
CMD /bin/bash

View File

@@ -62,6 +62,58 @@ pip install pytest
pytest
```
## Subpackages
## Testing the installation
All unit tests in baselines can be run using pytest runner:
```
pip install pytest
pytest
```
## Training models
Most of the algorithms in baselines repo are used as follows:
```bash
python -m baselines.common.run --alg=<name of the algorithm> --env=<environment_id> [additional arguments]
```
### Example 1. PPO with MuJoCo Humanoid
For instance, to train a fully-connected network controlling MuJoCo humanoid using ppo2 for 20M timesteps
```bash
python -m baselines.common.run --alg=ppo2 --env=Humanoid-v2 --network=mlp --num-timesteps=2e7
```
Note that for mujoco environments fully-connected network is default, so we can omit `--network=mlp`
The hyperparameters for both network and the learning algorithm can be controlled via the command line, for instance:
```bash
python -m baselines.common.run --alg=ppo2 --env=Humanoid-v2 --network=mlp --num-timesteps=2e7 --ent_coef=0.1 --num_hidden=32 --num_layers=3
```
will set entropy coeffient to 0.1, and construct fully connected network with 3 layers with 32 hidden units in each.
See docstrings in [common/models.py](common/models.py) for description of network parameters for each type of model, and
docstring for [baselines/ppo2/ppo2.py/learn()](ppo2/ppo2.py) fir the description of the ppo2 hyperparamters.
### Example 2. DQN on Atari
DQN with Atari is at this point a classics of benchmarks. To run the baselines implementation of DQN on Atari Pong:
```
python -m baselines.common.run --alg=deepq --env=PongNoFrameskip-v4 --num-timesteps=10000000
```
## Saving, loading and visualizing models
The algorithms serialization API is not properly unified yet; however, there is a simple method to save / restore trained models.
`--model-path` command-line option loads the tensorflow state from a given path before training, and saves it after the training.
Let's imagine you'd like to train a2c on MuJoCo humanoid, save the model and then later visualize what has it learnt.
```bash
python -m baselines.common.run --alg=a2c --env=Humanoid-v2 --num-timesteps=2e7 --model-path=~/models/humanoid_20M_a2c
```
To load and visualize the model, we'll do the following - load the model, train it for trivial number of steps (say, 10), and then visualize:
```bash
python -m baselines.common.run --alg=a2c --env=Humanoid-v2 --num-timesteps=10 --model-path=~/models/humanoid_20M_a2c --play
```
## Subpackages
- [A2C](baselines/a2c)

View File

@@ -1,42 +1,48 @@
import os.path as osp
import time
import joblib
import numpy as np
import tensorflow as tf
from baselines import logger
from baselines.common import set_global_seeds, explained_variance
from baselines.common.runners import AbstractEnvRunner
from baselines.common import tf_util
from baselines.common.policies import build_policy
from baselines.a2c.utils import discount_with_dones
from baselines.a2c.utils import Scheduler, make_path, find_trainable_variables
from baselines.a2c.utils import cat_entropy, mse
from baselines.a2c.runner import Runner
from tensorflow import losses
class Model(object):
def __init__(self, policy, ob_space, ac_space, nenvs, nsteps,
def __init__(self, policy, env, nsteps,
ent_coef=0.01, vf_coef=0.5, max_grad_norm=0.5, lr=7e-4,
alpha=0.99, epsilon=1e-5, total_timesteps=int(80e6), lrschedule='linear'):
sess = tf_util.make_session()
sess = tf_util.get_session()
nenvs = env.num_envs
nbatch = nenvs*nsteps
A = tf.placeholder(tf.int32, [nbatch])
with tf.variable_scope('a2c_model', reuse=tf.AUTO_REUSE):
step_model = policy(nenvs, 1, sess)
train_model = policy(nbatch, nsteps, sess)
A = tf.placeholder(train_model.action.dtype, train_model.action.shape)
ADV = tf.placeholder(tf.float32, [nbatch])
R = tf.placeholder(tf.float32, [nbatch])
LR = tf.placeholder(tf.float32, [])
step_model = policy(sess, ob_space, ac_space, nenvs, 1, reuse=False)
train_model = policy(sess, ob_space, ac_space, nenvs*nsteps, nsteps, reuse=True)
neglogpac = train_model.pd.neglogp(A)
entropy = tf.reduce_mean(train_model.pd.entropy())
neglogpac = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=train_model.pi, labels=A)
pg_loss = tf.reduce_mean(ADV * neglogpac)
vf_loss = tf.reduce_mean(mse(tf.squeeze(train_model.vf), R))
entropy = tf.reduce_mean(cat_entropy(train_model.pi))
vf_loss = losses.mean_squared_error(tf.squeeze(train_model.vf), R)
loss = pg_loss - entropy*ent_coef + vf_loss * vf_coef
params = find_trainable_variables("model")
params = find_trainable_variables("a2c_model")
grads = tf.gradients(loss, params)
if max_grad_norm is not None:
grads, grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
@@ -50,6 +56,7 @@ class Model(object):
advs = rewards - values
for step in range(len(obs)):
cur_lr = lr.value()
td_map = {train_model.X:obs, A:actions, ADV:advs, R:rewards, LR:cur_lr}
if states is not None:
td_map[train_model.S] = states
@@ -82,61 +89,79 @@ class Model(object):
self.load = load
tf.global_variables_initializer().run(session=sess)
class Runner(AbstractEnvRunner):
def __init__(self, env, model, nsteps=5, gamma=0.99):
super().__init__(env=env, model=model, nsteps=nsteps)
self.gamma = gamma
def learn(
network,
env,
seed=None,
nsteps=5,
total_timesteps=int(80e6),
vf_coef=0.5,
ent_coef=0.01,
max_grad_norm=0.5,
lr=7e-4,
lrschedule='linear',
epsilon=1e-5,
alpha=0.99,
gamma=0.99,
log_interval=100,
**network_kwargs):
'''
Main entrypoint for A2C algorithm. Train a policy with given network architecture on a given environment using a2c algorithm.
Parameters:
-----------
network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list)
specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns
tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward
neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets.
See baselines.common/policies.py/lstm for more details on using recurrent nets in policies
env: RL environment. Should implement interface similar to VecEnv (baselines.common/vec_env) or be wrapped with DummyVecEnv (baselines.common/vec_env/dummy_vec_env.py)
seed: seed to make random number sequence in the alorightm reproducible. By default is None which means seed from system noise generator (not reproducible)
nsteps: int, number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where
nenv is number of environment copies simulated in parallel)
total_timesteps: int, total number of timesteps to train on (default: 80M)
vf_coef: float, coefficient in front of value function loss in the total loss function (default: 0.5)
ent_coef: float, coeffictiant in front of the policy entropy in the total loss function (default: 0.01)
max_gradient_norm: float, gradient is clipped to have global L2 norm no more than this value (default: 0.5)
lr: float, learning rate for RMSProp (current implementation has RMSProp hardcoded in) (default: 7e-4)
lrschedule: schedule of learning rate. Can be 'linear', 'constant', or a function [0..1] -> [0..1] that takes fraction of the training progress as input and
returns fraction of the learning rate (specified as lr) as output
epsilon: float, RMSProp epsilon (stabilizes square root computation in denominator of RMSProp update) (default: 1e-5)
alpha: float, RMSProp decay parameter (default: 0.99)
gamma: float, reward discounting parameter (default: 0.99)
log_interval: int, specifies how frequently the logs are printed out (default: 100)
**network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network
For instance, 'mlp' network architecture has arguments num_hidden and num_layers.
'''
def run(self):
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones = [],[],[],[],[]
mb_states = self.states
for n in range(self.nsteps):
actions, values, states, _ = self.model.step(self.obs, self.states, self.dones)
mb_obs.append(np.copy(self.obs))
mb_actions.append(actions)
mb_values.append(values)
mb_dones.append(self.dones)
obs, rewards, dones, _ = self.env.step(actions)
self.states = states
self.dones = dones
for n, done in enumerate(dones):
if done:
self.obs[n] = self.obs[n]*0
self.obs = obs
mb_rewards.append(rewards)
mb_dones.append(self.dones)
#batch of steps to batch of rollouts
mb_obs = np.asarray(mb_obs, dtype=np.uint8).swapaxes(1, 0).reshape(self.batch_ob_shape)
mb_rewards = np.asarray(mb_rewards, dtype=np.float32).swapaxes(1, 0)
mb_actions = np.asarray(mb_actions, dtype=np.int32).swapaxes(1, 0)
mb_values = np.asarray(mb_values, dtype=np.float32).swapaxes(1, 0)
mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(1, 0)
mb_masks = mb_dones[:, :-1]
mb_dones = mb_dones[:, 1:]
last_values = self.model.value(self.obs, self.states, self.dones).tolist()
#discount/bootstrap off value fn
for n, (rewards, dones, value) in enumerate(zip(mb_rewards, mb_dones, last_values)):
rewards = rewards.tolist()
dones = dones.tolist()
if dones[-1] == 0:
rewards = discount_with_dones(rewards+[value], dones+[0], self.gamma)[:-1]
else:
rewards = discount_with_dones(rewards, dones, self.gamma)
mb_rewards[n] = rewards
mb_rewards = mb_rewards.flatten()
mb_actions = mb_actions.flatten()
mb_values = mb_values.flatten()
mb_masks = mb_masks.flatten()
return mb_obs, mb_states, mb_rewards, mb_masks, mb_actions, mb_values
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100):
set_global_seeds(seed)
nenvs = env.num_envs
ob_space = env.observation_space
ac_space = env.action_space
model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
policy = build_policy(env, network, **network_kwargs)
model = Model(policy=policy, env=env, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule)
runner = Runner(env, model, nsteps=nsteps, gamma=gamma)
@@ -158,3 +183,4 @@ def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, e
logger.dump_tabular()
env.close()
return model

View File

@@ -1,146 +0,0 @@
import numpy as np
import tensorflow as tf
from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch, lstm, lnlstm
from baselines.common.distributions import make_pdtype
from baselines.common.input import observation_input
def nature_cnn(unscaled_images, **conv_kwargs):
"""
CNN from Nature paper.
"""
scaled_images = tf.cast(unscaled_images, tf.float32) / 255.
activ = tf.nn.relu
h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2),
**conv_kwargs))
h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs))
h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs))
h3 = conv_to_fc(h3)
return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
class LnLstmPolicy(object):
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
nenv = nbatch // nsteps
X, processed_x = observation_input(ob_space, nbatch)
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
self.pdtype = make_pdtype(ac_space)
with tf.variable_scope("model", reuse=reuse):
h = nature_cnn(processed_x)
xs = batch_to_seq(h, nenv, nsteps)
ms = batch_to_seq(M, nenv, nsteps)
h5, snew = lnlstm(xs, ms, S, 'lstm1', nh=nlstm)
h5 = seq_to_batch(h5)
vf = fc(h5, 'v', 1)
self.pd, self.pi = self.pdtype.pdfromlatent(h5)
v0 = vf[:, 0]
a0 = self.pd.sample()
neglogp0 = self.pd.neglogp(a0)
self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)
def step(ob, state, mask):
return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask})
def value(ob, state, mask):
return sess.run(v0, {X:ob, S:state, M:mask})
self.X = X
self.M = M
self.S = S
self.vf = vf
self.step = step
self.value = value
class LstmPolicy(object):
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
nenv = nbatch // nsteps
self.pdtype = make_pdtype(ac_space)
X, processed_x = observation_input(ob_space, nbatch)
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
with tf.variable_scope("model", reuse=reuse):
h = nature_cnn(X)
xs = batch_to_seq(h, nenv, nsteps)
ms = batch_to_seq(M, nenv, nsteps)
h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm)
h5 = seq_to_batch(h5)
vf = fc(h5, 'v', 1)
self.pd, self.pi = self.pdtype.pdfromlatent(h5)
v0 = vf[:, 0]
a0 = self.pd.sample()
neglogp0 = self.pd.neglogp(a0)
self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)
def step(ob, state, mask):
return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask})
def value(ob, state, mask):
return sess.run(v0, {X:ob, S:state, M:mask})
self.X = X
self.M = M
self.S = S
self.vf = vf
self.step = step
self.value = value
class CnnPolicy(object):
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False, **conv_kwargs): #pylint: disable=W0613
self.pdtype = make_pdtype(ac_space)
X, processed_x = observation_input(ob_space, nbatch)
with tf.variable_scope("model", reuse=reuse):
h = nature_cnn(processed_x, **conv_kwargs)
vf = fc(h, 'v', 1)[:,0]
self.pd, self.pi = self.pdtype.pdfromlatent(h, init_scale=0.01)
a0 = self.pd.sample()
neglogp0 = self.pd.neglogp(a0)
self.initial_state = None
def step(ob, *_args, **_kwargs):
a, v, neglogp = sess.run([a0, vf, neglogp0], {X:ob})
return a, v, self.initial_state, neglogp
def value(ob, *_args, **_kwargs):
return sess.run(vf, {X:ob})
self.X = X
self.vf = vf
self.step = step
self.value = value
class MlpPolicy(object):
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False): #pylint: disable=W0613
self.pdtype = make_pdtype(ac_space)
with tf.variable_scope("model", reuse=reuse):
X, processed_x = observation_input(ob_space, nbatch)
activ = tf.tanh
processed_x = tf.layers.flatten(processed_x)
pi_h1 = activ(fc(processed_x, 'pi_fc1', nh=64, init_scale=np.sqrt(2)))
pi_h2 = activ(fc(pi_h1, 'pi_fc2', nh=64, init_scale=np.sqrt(2)))
vf_h1 = activ(fc(processed_x, 'vf_fc1', nh=64, init_scale=np.sqrt(2)))
vf_h2 = activ(fc(vf_h1, 'vf_fc2', nh=64, init_scale=np.sqrt(2)))
vf = fc(vf_h2, 'vf', 1)[:,0]
self.pd, self.pi = self.pdtype.pdfromlatent(pi_h2, init_scale=0.01)
a0 = self.pd.sample()
neglogp0 = self.pd.neglogp(a0)
self.initial_state = None
def step(ob, *_args, **_kwargs):
a, v, neglogp = sess.run([a0, vf, neglogp0], {X:ob})
return a, v, self.initial_state, neglogp
def value(ob, *_args, **_kwargs):
return sess.run(vf, {X:ob})
self.X = X
self.vf = vf
self.step = step
self.value = value

View File

@@ -1,30 +0,0 @@
#!/usr/bin/env python3
from baselines import logger
from baselines.common.cmd_util import make_atari_env, atari_arg_parser
from baselines.common.vec_env.vec_frame_stack import VecFrameStack
from baselines.a2c.a2c import learn
from baselines.ppo2.policies import CnnPolicy, LstmPolicy, LnLstmPolicy
def train(env_id, num_timesteps, seed, policy, lrschedule, num_env):
if policy == 'cnn':
policy_fn = CnnPolicy
elif policy == 'lstm':
policy_fn = LstmPolicy
elif policy == 'lnlstm':
policy_fn = LnLstmPolicy
env = VecFrameStack(make_atari_env(env_id, num_env, seed), 4)
learn(policy_fn, env, seed, total_timesteps=int(num_timesteps * 1.1), lrschedule=lrschedule)
env.close()
def main():
parser = atari_arg_parser()
parser.add_argument('--policy', help='Policy architecture', choices=['cnn', 'lstm', 'lnlstm'], default='cnn')
parser.add_argument('--lrschedule', help='Learning rate schedule', choices=['constant', 'linear'], default='constant')
args = parser.parse_args()
logger.configure()
train(args.env, num_timesteps=args.num_timesteps, seed=args.seed,
policy=args.policy, lrschedule=args.lrschedule, num_env=16)
if __name__ == '__main__':
main()

View File

@@ -1,8 +1,6 @@
import os
import gym
import numpy as np
import tensorflow as tf
from gym import spaces
from collections import deque
def sample(logits):
@@ -10,18 +8,15 @@ def sample(logits):
return tf.argmax(logits - tf.log(-tf.log(noise)), 1)
def cat_entropy(logits):
a0 = logits - tf.reduce_max(logits, 1, keep_dims=True)
a0 = logits - tf.reduce_max(logits, 1, keepdims=True)
ea0 = tf.exp(a0)
z0 = tf.reduce_sum(ea0, 1, keep_dims=True)
z0 = tf.reduce_sum(ea0, 1, keepdims=True)
p0 = ea0 / z0
return tf.reduce_sum(p0 * (tf.log(z0) - a0), 1)
def cat_entropy_softmax(p0):
return - tf.reduce_sum(p0 * tf.log(p0 + 1e-6), axis = 1)
def mse(pred, target):
return tf.square(pred-target)/2.
def ortho_init(scale=1.0):
def _ortho_init(shape, dtype, partition_info=None):
#lasagne ortho init for tf
@@ -58,7 +53,7 @@ def conv(x, scope, *, nf, rf, stride, pad='VALID', init_scale=1.0, data_format='
b = tf.get_variable("b", bias_var_shape, initializer=tf.constant_initializer(0.0))
if not one_dim_bias and data_format == 'NHWC':
b = tf.reshape(b, bshape)
return b + tf.nn.conv2d(x, w, strides=strides, padding=pad, data_format=data_format)
return tf.nn.conv2d(x, w, strides=strides, padding=pad, data_format=data_format) + b
def fc(x, scope, nh, *, init_scale=1.0, init_bias=0.0):
with tf.variable_scope(scope):
@@ -85,7 +80,6 @@ def seq_to_batch(h, flat = False):
def lstm(xs, ms, s, scope, nh, init_scale=1.0):
nbatch, nin = [v.value for v in xs[0].get_shape()]
nsteps = len(xs)
with tf.variable_scope(scope):
wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale))
wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale))
@@ -115,7 +109,6 @@ def _ln(x, g, b, e=1e-5, axes=[1]):
def lnlstm(xs, ms, s, scope, nh, init_scale=1.0):
nbatch, nin = [v.value for v in xs[0].get_shape()]
nsteps = len(xs)
with tf.variable_scope(scope):
wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale))
gx = tf.get_variable("gx", [nh*4], initializer=tf.constant_initializer(1.0))
@@ -160,8 +153,7 @@ def discount_with_dones(rewards, dones, gamma):
return discounted[::-1]
def find_trainable_variables(key):
with tf.variable_scope(key):
return tf.trainable_variables()
return tf.trainable_variables(key)
def make_path(f):
return os.makedirs(f, exist_ok=True)

View File

@@ -1,348 +0,0 @@
import time
import joblib
import numpy as np
import tensorflow as tf
from baselines import logger
from baselines.common import set_global_seeds
from baselines.common.runners import AbstractEnvRunner
from baselines.a2c.utils import batch_to_seq, seq_to_batch
from baselines.a2c.utils import Scheduler, make_path, find_trainable_variables
from baselines.a2c.utils import cat_entropy_softmax
from baselines.a2c.utils import EpisodeStats
from baselines.a2c.utils import get_by_index, check_shape, avg_norm, gradient_add, q_explained_variance
from baselines.acer.buffer import Buffer
import os.path as osp
# remove last step
def strip(var, nenvs, nsteps, flat = False):
vars = batch_to_seq(var, nenvs, nsteps + 1, flat)
return seq_to_batch(vars[:-1], flat)
def q_retrace(R, D, q_i, v, rho_i, nenvs, nsteps, gamma):
"""
Calculates q_retrace targets
:param R: Rewards
:param D: Dones
:param q_i: Q values for actions taken
:param v: V values
:param rho_i: Importance weight for each action
:return: Q_retrace values
"""
rho_bar = batch_to_seq(tf.minimum(1.0, rho_i), nenvs, nsteps, True) # list of len steps, shape [nenvs]
rs = batch_to_seq(R, nenvs, nsteps, True) # list of len steps, shape [nenvs]
ds = batch_to_seq(D, nenvs, nsteps, True) # list of len steps, shape [nenvs]
q_is = batch_to_seq(q_i, nenvs, nsteps, True)
vs = batch_to_seq(v, nenvs, nsteps + 1, True)
v_final = vs[-1]
qret = v_final
qrets = []
for i in range(nsteps - 1, -1, -1):
check_shape([qret, ds[i], rs[i], rho_bar[i], q_is[i], vs[i]], [[nenvs]] * 6)
qret = rs[i] + gamma * qret * (1.0 - ds[i])
qrets.append(qret)
qret = (rho_bar[i] * (qret - q_is[i])) + vs[i]
qrets = qrets[::-1]
qret = seq_to_batch(qrets, flat=True)
return qret
# For ACER with PPO clipping instead of trust region
# def clip(ratio, eps_clip):
# # assume 0 <= eps_clip <= 1
# return tf.minimum(1 + eps_clip, tf.maximum(1 - eps_clip, ratio))
class Model(object):
def __init__(self, policy, ob_space, ac_space, nenvs, nsteps, nstack, num_procs,
ent_coef, q_coef, gamma, max_grad_norm, lr,
rprop_alpha, rprop_epsilon, total_timesteps, lrschedule,
c, trust_region, alpha, delta):
config = tf.ConfigProto(allow_soft_placement=True,
intra_op_parallelism_threads=num_procs,
inter_op_parallelism_threads=num_procs)
sess = tf.Session(config=config)
nact = ac_space.n
nbatch = nenvs * nsteps
A = tf.placeholder(tf.int32, [nbatch]) # actions
D = tf.placeholder(tf.float32, [nbatch]) # dones
R = tf.placeholder(tf.float32, [nbatch]) # rewards, not returns
MU = tf.placeholder(tf.float32, [nbatch, nact]) # mu's
LR = tf.placeholder(tf.float32, [])
eps = 1e-6
step_model = policy(sess, ob_space, ac_space, nenvs, 1, nstack, reuse=False)
train_model = policy(sess, ob_space, ac_space, nenvs, nsteps + 1, nstack, reuse=True)
params = find_trainable_variables("model")
print("Params {}".format(len(params)))
for var in params:
print(var)
# create polyak averaged model
ema = tf.train.ExponentialMovingAverage(alpha)
ema_apply_op = ema.apply(params)
def custom_getter(getter, *args, **kwargs):
v = ema.average(getter(*args, **kwargs))
print(v.name)
return v
with tf.variable_scope("", custom_getter=custom_getter, reuse=True):
polyak_model = policy(sess, ob_space, ac_space, nenvs, nsteps + 1, nstack, reuse=True)
# Notation: (var) = batch variable, (var)s = seqeuence variable, (var)_i = variable index by action at step i
v = tf.reduce_sum(train_model.pi * train_model.q, axis = -1) # shape is [nenvs * (nsteps + 1)]
# strip off last step
f, f_pol, q = map(lambda var: strip(var, nenvs, nsteps), [train_model.pi, polyak_model.pi, train_model.q])
# Get pi and q values for actions taken
f_i = get_by_index(f, A)
q_i = get_by_index(q, A)
# Compute ratios for importance truncation
rho = f / (MU + eps)
rho_i = get_by_index(rho, A)
# Calculate Q_retrace targets
qret = q_retrace(R, D, q_i, v, rho_i, nenvs, nsteps, gamma)
# Calculate losses
# Entropy
entropy = tf.reduce_mean(cat_entropy_softmax(f))
# Policy Graident loss, with truncated importance sampling & bias correction
v = strip(v, nenvs, nsteps, True)
check_shape([qret, v, rho_i, f_i], [[nenvs * nsteps]] * 4)
check_shape([rho, f, q], [[nenvs * nsteps, nact]] * 2)
# Truncated importance sampling
adv = qret - v
logf = tf.log(f_i + eps)
gain_f = logf * tf.stop_gradient(adv * tf.minimum(c, rho_i)) # [nenvs * nsteps]
loss_f = -tf.reduce_mean(gain_f)
# Bias correction for the truncation
adv_bc = (q - tf.reshape(v, [nenvs * nsteps, 1])) # [nenvs * nsteps, nact]
logf_bc = tf.log(f + eps) # / (f_old + eps)
check_shape([adv_bc, logf_bc], [[nenvs * nsteps, nact]]*2)
gain_bc = tf.reduce_sum(logf_bc * tf.stop_gradient(adv_bc * tf.nn.relu(1.0 - (c / (rho + eps))) * f), axis = 1) #IMP: This is sum, as expectation wrt f
loss_bc= -tf.reduce_mean(gain_bc)
loss_policy = loss_f + loss_bc
# Value/Q function loss, and explained variance
check_shape([qret, q_i], [[nenvs * nsteps]]*2)
ev = q_explained_variance(tf.reshape(q_i, [nenvs, nsteps]), tf.reshape(qret, [nenvs, nsteps]))
loss_q = tf.reduce_mean(tf.square(tf.stop_gradient(qret) - q_i)*0.5)
# Net loss
check_shape([loss_policy, loss_q, entropy], [[]] * 3)
loss = loss_policy + q_coef * loss_q - ent_coef * entropy
if trust_region:
g = tf.gradients(- (loss_policy - ent_coef * entropy) * nsteps * nenvs, f) #[nenvs * nsteps, nact]
# k = tf.gradients(KL(f_pol || f), f)
k = - f_pol / (f + eps) #[nenvs * nsteps, nact] # Directly computed gradient of KL divergence wrt f
k_dot_g = tf.reduce_sum(k * g, axis=-1)
adj = tf.maximum(0.0, (tf.reduce_sum(k * g, axis=-1) - delta) / (tf.reduce_sum(tf.square(k), axis=-1) + eps)) #[nenvs * nsteps]
# Calculate stats (before doing adjustment) for logging.
avg_norm_k = avg_norm(k)
avg_norm_g = avg_norm(g)
avg_norm_k_dot_g = tf.reduce_mean(tf.abs(k_dot_g))
avg_norm_adj = tf.reduce_mean(tf.abs(adj))
g = g - tf.reshape(adj, [nenvs * nsteps, 1]) * k
grads_f = -g/(nenvs*nsteps) # These are turst region adjusted gradients wrt f ie statistics of policy pi
grads_policy = tf.gradients(f, params, grads_f)
grads_q = tf.gradients(loss_q * q_coef, params)
grads = [gradient_add(g1, g2, param) for (g1, g2, param) in zip(grads_policy, grads_q, params)]
avg_norm_grads_f = avg_norm(grads_f) * (nsteps * nenvs)
norm_grads_q = tf.global_norm(grads_q)
norm_grads_policy = tf.global_norm(grads_policy)
else:
grads = tf.gradients(loss, params)
if max_grad_norm is not None:
grads, norm_grads = tf.clip_by_global_norm(grads, max_grad_norm)
grads = list(zip(grads, params))
trainer = tf.train.RMSPropOptimizer(learning_rate=LR, decay=rprop_alpha, epsilon=rprop_epsilon)
_opt_op = trainer.apply_gradients(grads)
# so when you call _train, you first do the gradient step, then you apply ema
with tf.control_dependencies([_opt_op]):
_train = tf.group(ema_apply_op)
lr = Scheduler(v=lr, nvalues=total_timesteps, schedule=lrschedule)
# Ops/Summaries to run, and their names for logging
run_ops = [_train, loss, loss_q, entropy, loss_policy, loss_f, loss_bc, ev, norm_grads]
names_ops = ['loss', 'loss_q', 'entropy', 'loss_policy', 'loss_f', 'loss_bc', 'explained_variance',
'norm_grads']
if trust_region:
run_ops = run_ops + [norm_grads_q, norm_grads_policy, avg_norm_grads_f, avg_norm_k, avg_norm_g, avg_norm_k_dot_g,
avg_norm_adj]
names_ops = names_ops + ['norm_grads_q', 'norm_grads_policy', 'avg_norm_grads_f', 'avg_norm_k', 'avg_norm_g',
'avg_norm_k_dot_g', 'avg_norm_adj']
def train(obs, actions, rewards, dones, mus, states, masks, steps):
cur_lr = lr.value_steps(steps)
td_map = {train_model.X: obs, polyak_model.X: obs, A: actions, R: rewards, D: dones, MU: mus, LR: cur_lr}
if states != []:
td_map[train_model.S] = states
td_map[train_model.M] = masks
td_map[polyak_model.S] = states
td_map[polyak_model.M] = masks
return names_ops, sess.run(run_ops, td_map)[1:] # strip off _train
def save(save_path):
ps = sess.run(params)
make_path(osp.dirname(save_path))
joblib.dump(ps, save_path)
self.train = train
self.save = save
self.train_model = train_model
self.step_model = step_model
self.step = step_model.step
self.initial_state = step_model.initial_state
tf.global_variables_initializer().run(session=sess)
class Runner(AbstractEnvRunner):
def __init__(self, env, model, nsteps, nstack):
super().__init__(env=env, model=model, nsteps=nsteps)
self.nstack = nstack
nh, nw, nc = env.observation_space.shape
self.nc = nc # nc = 1 for atari, but just in case
self.nenv = nenv = env.num_envs
self.nact = env.action_space.n
self.nbatch = nenv * nsteps
self.batch_ob_shape = (nenv*(nsteps+1), nh, nw, nc*nstack)
self.obs = np.zeros((nenv, nh, nw, nc * nstack), dtype=np.uint8)
obs = env.reset()
self.update_obs(obs)
def update_obs(self, obs, dones=None):
if dones is not None:
self.obs *= (1 - dones.astype(np.uint8))[:, None, None, None]
self.obs = np.roll(self.obs, shift=-self.nc, axis=3)
self.obs[:, :, :, -self.nc:] = obs[:, :, :, :]
def run(self):
enc_obs = np.split(self.obs, self.nstack, axis=3) # so now list of obs steps
mb_obs, mb_actions, mb_mus, mb_dones, mb_rewards = [], [], [], [], []
for _ in range(self.nsteps):
actions, mus, states = self.model.step(self.obs, state=self.states, mask=self.dones)
mb_obs.append(np.copy(self.obs))
mb_actions.append(actions)
mb_mus.append(mus)
mb_dones.append(self.dones)
obs, rewards, dones, _ = self.env.step(actions)
# states information for statefull models like LSTM
self.states = states
self.dones = dones
self.update_obs(obs, dones)
mb_rewards.append(rewards)
enc_obs.append(obs)
mb_obs.append(np.copy(self.obs))
mb_dones.append(self.dones)
enc_obs = np.asarray(enc_obs, dtype=np.uint8).swapaxes(1, 0)
mb_obs = np.asarray(mb_obs, dtype=np.uint8).swapaxes(1, 0)
mb_actions = np.asarray(mb_actions, dtype=np.int32).swapaxes(1, 0)
mb_rewards = np.asarray(mb_rewards, dtype=np.float32).swapaxes(1, 0)
mb_mus = np.asarray(mb_mus, dtype=np.float32).swapaxes(1, 0)
mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(1, 0)
mb_masks = mb_dones # Used for statefull models like LSTM's to mask state when done
mb_dones = mb_dones[:, 1:] # Used for calculating returns. The dones array is now aligned with rewards
# shapes are now [nenv, nsteps, []]
# When pulling from buffer, arrays will now be reshaped in place, preventing a deep copy.
return enc_obs, mb_obs, mb_actions, mb_rewards, mb_mus, mb_dones, mb_masks
class Acer():
def __init__(self, runner, model, buffer, log_interval):
self.runner = runner
self.model = model
self.buffer = buffer
self.log_interval = log_interval
self.tstart = None
self.episode_stats = EpisodeStats(runner.nsteps, runner.nenv)
self.steps = None
def call(self, on_policy):
runner, model, buffer, steps = self.runner, self.model, self.buffer, self.steps
if on_policy:
enc_obs, obs, actions, rewards, mus, dones, masks = runner.run()
self.episode_stats.feed(rewards, dones)
if buffer is not None:
buffer.put(enc_obs, actions, rewards, mus, dones, masks)
else:
# get obs, actions, rewards, mus, dones from buffer.
obs, actions, rewards, mus, dones, masks = buffer.get()
# reshape stuff correctly
obs = obs.reshape(runner.batch_ob_shape)
actions = actions.reshape([runner.nbatch])
rewards = rewards.reshape([runner.nbatch])
mus = mus.reshape([runner.nbatch, runner.nact])
dones = dones.reshape([runner.nbatch])
masks = masks.reshape([runner.batch_ob_shape[0]])
names_ops, values_ops = model.train(obs, actions, rewards, dones, mus, model.initial_state, masks, steps)
if on_policy and (int(steps/runner.nbatch) % self.log_interval == 0):
logger.record_tabular("total_timesteps", steps)
logger.record_tabular("fps", int(steps/(time.time() - self.tstart)))
# IMP: In EpisodicLife env, during training, we get done=True at each loss of life, not just at the terminal state.
# Thus, this is mean until end of life, not end of episode.
# For true episode rewards, see the monitor files in the log folder.
logger.record_tabular("mean_episode_length", self.episode_stats.mean_length())
logger.record_tabular("mean_episode_reward", self.episode_stats.mean_reward())
for name, val in zip(names_ops, values_ops):
logger.record_tabular(name, float(val))
logger.dump_tabular()
def learn(policy, env, seed, nsteps=20, nstack=4, total_timesteps=int(80e6), q_coef=0.5, ent_coef=0.01,
max_grad_norm=10, lr=7e-4, lrschedule='linear', rprop_epsilon=1e-5, rprop_alpha=0.99, gamma=0.99,
log_interval=100, buffer_size=50000, replay_ratio=4, replay_start=10000, c=10.0,
trust_region=True, alpha=0.99, delta=1):
print("Running Acer Simple")
print(locals())
tf.reset_default_graph()
set_global_seeds(seed)
nenvs = env.num_envs
ob_space = env.observation_space
ac_space = env.action_space
num_procs = len(env.remotes) # HACK
model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, nstack=nstack,
num_procs=num_procs, ent_coef=ent_coef, q_coef=q_coef, gamma=gamma,
max_grad_norm=max_grad_norm, lr=lr, rprop_alpha=rprop_alpha, rprop_epsilon=rprop_epsilon,
total_timesteps=total_timesteps, lrschedule=lrschedule, c=c,
trust_region=trust_region, alpha=alpha, delta=delta)
runner = Runner(env=env, model=model, nsteps=nsteps, nstack=nstack)
if replay_ratio > 0:
buffer = Buffer(env=env, nsteps=nsteps, nstack=nstack, size=buffer_size)
else:
buffer = None
nbatch = nenvs*nsteps
acer = Acer(runner, model, buffer, log_interval)
acer.tstart = time.time()
for acer.steps in range(0, total_timesteps, nbatch): #nbatch samples, 1 on_policy call and multiple off-policy calls
acer.call(on_policy=True)
if replay_ratio > 0 and buffer.has_atleast(replay_start):
n = np.random.poisson(replay_ratio)
for _ in range(n):
acer.call(on_policy=False) # no simulation steps in this
env.close()

View File

@@ -1,6 +1,6 @@
import numpy as np
import tensorflow as tf
from baselines.ppo2.policies import nature_cnn
from baselines.common.policies import nature_cnn
from baselines.a2c.utils import fc, batch_to_seq, seq_to_batch, lstm, sample
@@ -18,11 +18,13 @@ class AcerCnnPolicy(object):
pi = tf.nn.softmax(pi_logits)
q = fc(h, 'q', nact)
a = sample(pi_logits) # could change this to use self.pi instead
a = sample(tf.nn.softmax(pi_logits)) # could change this to use self.pi instead
self.initial_state = [] # not stateful
self.X = X
self.pi = pi # actual policy params now
self.pi_logits = pi_logits
self.q = q
self.vf = q
def step(ob, *args, **kwargs):
# returns actions, mus, states

View File

@@ -1,30 +0,0 @@
#!/usr/bin/env python3
from baselines import logger
from baselines.acer.acer_simple import learn
from baselines.acer.policies import AcerCnnPolicy, AcerLstmPolicy
from baselines.common.cmd_util import make_atari_env, atari_arg_parser
def train(env_id, num_timesteps, seed, policy, lrschedule, num_cpu):
env = make_atari_env(env_id, num_cpu, seed)
if policy == 'cnn':
policy_fn = AcerCnnPolicy
elif policy == 'lstm':
policy_fn = AcerLstmPolicy
else:
print("Policy {} not implemented".format(policy))
return
learn(policy_fn, env, seed, total_timesteps=int(num_timesteps * 1.1), lrschedule=lrschedule)
env.close()
def main():
parser = atari_arg_parser()
parser.add_argument('--policy', help='Policy architecture', choices=['cnn', 'lstm', 'lnlstm'], default='cnn')
parser.add_argument('--lrschedule', help='Learning rate schedule', choices=['constant', 'linear'], default='constant')
parser.add_argument('--logdir', help ='Directory for logging')
args = parser.parse_args()
logger.configure(args.logdir)
train(args.env, num_timesteps=args.num_timesteps, seed=args.seed,
policy=args.policy, lrschedule=args.lrschedule, num_cpu=16)
if __name__ == '__main__':
main()

View File

@@ -6,11 +6,12 @@ import tensorflow as tf
from baselines import logger
from baselines.common import set_global_seeds, explained_variance
from baselines.common.policies import build_policy
from baselines.common.tf_util import get_session
from baselines.a2c.a2c import Runner
from baselines.a2c.runner import Runner
from baselines.a2c.utils import discount_with_dones
from baselines.a2c.utils import Scheduler, find_trainable_variables
from baselines.a2c.utils import cat_entropy, mse
from baselines.acktr import kfac
@@ -19,11 +20,8 @@ class Model(object):
def __init__(self, policy, ob_space, ac_space, nenvs,total_timesteps, nprocs=32, nsteps=20,
ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5,
kfac_clip=0.001, lrschedule='linear'):
config = tf.ConfigProto(allow_soft_placement=True,
intra_op_parallelism_threads=nprocs,
inter_op_parallelism_threads=nprocs)
config.gpu_options.allow_growth = True
self.sess = sess = tf.Session(config=config)
self.sess = sess = get_session()
nact = ac_space.n
nbatch = nenvs * nsteps
A = tf.placeholder(tf.int32, [nbatch])
@@ -32,27 +30,28 @@ class Model(object):
PG_LR = tf.placeholder(tf.float32, [])
VF_LR = tf.placeholder(tf.float32, [])
self.model = step_model = policy(sess, ob_space, ac_space, nenvs, 1, reuse=False)
self.model2 = train_model = policy(sess, ob_space, ac_space, nenvs*nsteps, nsteps, reuse=True)
with tf.variable_scope('acktr_model', reuse=tf.AUTO_REUSE):
self.model = step_model = policy(nenvs, 1, sess=sess)
self.model2 = train_model = policy(nenvs*nsteps, nsteps, sess=sess)
logpac = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=train_model.pi, labels=A)
neglogpac = train_model.pd.neglogp(A)
self.logits = logits = train_model.pi
##training loss
pg_loss = tf.reduce_mean(ADV*logpac)
entropy = tf.reduce_mean(cat_entropy(train_model.pi))
pg_loss = tf.reduce_mean(ADV*neglogpac)
entropy = tf.reduce_mean(train_model.pd.entropy())
pg_loss = pg_loss - ent_coef * entropy
vf_loss = tf.reduce_mean(mse(tf.squeeze(train_model.vf), R))
vf_loss = tf.losses.mean_squared_error(tf.squeeze(train_model.vf), R)
train_loss = pg_loss + vf_coef * vf_loss
##Fisher loss construction
self.pg_fisher = pg_fisher_loss = -tf.reduce_mean(logpac)
self.pg_fisher = pg_fisher_loss = -tf.reduce_mean(neglogpac)
sample_net = train_model.vf + tf.random_normal(tf.shape(train_model.vf))
self.vf_fisher = vf_fisher_loss = - vf_fisher_coef*tf.reduce_mean(tf.pow(train_model.vf - tf.stop_gradient(sample_net), 2))
self.joint_fisher = joint_fisher_loss = pg_fisher_loss + vf_fisher_loss
self.params=params = find_trainable_variables("model")
self.params=params = find_trainable_variables("acktr_model")
self.grads_check = grads = tf.gradients(train_loss,params)
@@ -105,12 +104,17 @@ class Model(object):
self.initial_state = step_model.initial_state
tf.global_variables_initializer().run(session=sess)
def learn(policy, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20,
def learn(network, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20,
ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5,
kfac_clip=0.001, save_interval=None, lrschedule='linear'):
tf.reset_default_graph()
kfac_clip=0.001, save_interval=None, lrschedule='linear', **network_kwargs):
set_global_seeds(seed)
if network == 'cnn':
network_kwargs['one_dim_bias'] = True
policy = build_policy(env, network, **network_kwargs)
nenvs = env.num_envs
ob_space = env.observation_space
ac_space = env.action_space
@@ -153,3 +157,4 @@ def learn(policy, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval
coord.request_stop()
coord.join(enqueue_threads)
env.close()
return model

View File

@@ -6,11 +6,11 @@ from baselines import logger
from baselines.acktr.acktr_disc import learn
from baselines.common.cmd_util import make_atari_env, atari_arg_parser
from baselines.common.vec_env.vec_frame_stack import VecFrameStack
from baselines.ppo2.policies import CnnPolicy
from baselines.common.policies import cnn
def train(env_id, num_timesteps, seed, num_cpu):
env = VecFrameStack(make_atari_env(env_id, num_cpu, seed), 4)
policy_fn = partial(CnnPolicy, one_dim_bias=True)
policy_fn = cnn(env=env, one_dim_bias=True)
learn(policy_fn, env, seed, total_timesteps=int(num_timesteps * 1.1), nprocs=num_cpu)
env.close()

View File

@@ -59,7 +59,7 @@ register_benchmark({
register_benchmark({
'name': 'Atari10M',
'description': '7 Atari games from Mnih et al. (2013), with pixel observations, 10M timesteps',
'tasks': [{'desc': _game, 'env_id': _game + _ATARI_SUFFIX, 'trials': 2, 'num_timesteps': int(10e6)} for _game in _atari7]
'tasks': [{'desc': _game, 'env_id': _game + _ATARI_SUFFIX, 'trials': 6, 'num_timesteps': int(10e6)} for _game in _atari7]
})
register_benchmark({
@@ -84,7 +84,7 @@ _mujocosmall = [
register_benchmark({
'name': 'Mujoco1M',
'description': 'Some small 2D MuJoCo tasks, run for 1M timesteps',
'tasks': [{'env_id': _envid, 'trials': 3, 'num_timesteps': int(1e6)} for _envid in _mujocosmall]
'tasks': [{'env_id': _envid, 'trials': 6, 'num_timesteps': int(1e6)} for _envid in _mujocosmall]
})
register_benchmark({
'name': 'MujocoWalkers',

View File

@@ -112,6 +112,8 @@ def load_results(dir):
with open(fname, 'rt') as fh:
if fname.endswith('csv'):
firstline = fh.readline()
if not firstline:
continue
assert firstline[0] == '#'
header = json.loads(firstline[1:])
df = pandas.read_csv(fh, index_col=None)
@@ -158,4 +160,4 @@ def test_monitor():
last_logline = pandas.read_csv(f, index_col=None)
assert set(last_logline.keys()) == {'l', 't', 'r'}, "Incorrect keys in monitor logline"
f.close()
os.remove(mon_file)
os.remove(mon_file)

View File

@@ -1,4 +1,6 @@
import numpy as np
import os
os.environ.setdefault('PATH', '')
from collections import deque
import gym
from gym import spaces

View File

@@ -3,7 +3,11 @@ Helpers for scripts like run_atari.py.
"""
import os
from mpi4py import MPI
try:
from mpi4py import MPI
except ImportError:
MPI = None
import gym
from gym.wrappers import FlattenDictWrapper
from baselines import logger
@@ -20,22 +24,28 @@ def make_atari_env(env_id, num_env, seed, wrapper_kwargs=None, start_index=0):
def make_env(rank): # pylint: disable=C0111
def _thunk():
env = make_atari(env_id)
env.seed(seed + rank)
env.seed(seed + rank if seed is not None else None)
env = Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)))
return wrap_deepmind(env, **wrapper_kwargs)
return _thunk
set_global_seeds(seed)
return SubprocVecEnv([make_env(i + start_index) for i in range(num_env)])
def make_mujoco_env(env_id, seed):
def make_mujoco_env(env_id, seed, reward_scale=1.0):
"""
Create a wrapped, monitored gym.Env for MuJoCo.
"""
rank = MPI.COMM_WORLD.Get_rank()
set_global_seeds(seed + 10000 * rank)
myseed = seed + 1000 * rank if seed is not None else None
set_global_seeds(myseed)
env = gym.make(env_id)
env = Monitor(env, os.path.join(logger.get_dir(), str(rank)))
env = Monitor(env, os.path.join(logger.get_dir(), str(rank)), allow_early_resets=True)
env.seed(seed)
if reward_scale != 1.0:
from baselines.common.retro_wrappers import RewardScaler
env = RewardScaler(env, reward_scale)
return env
def make_robotics_env(env_id, seed, rank=0):
@@ -64,18 +74,28 @@ def atari_arg_parser():
"""
parser = arg_parser()
parser.add_argument('--env', help='environment ID', default='BreakoutNoFrameskip-v4')
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
parser.add_argument('--seed', help='RNG seed', type=int, default=None)
parser.add_argument('--num-timesteps', type=int, default=int(10e6))
return parser
def mujoco_arg_parser():
print('Obsolete - use common_arg_parser instead')
return common_arg_parser()
def common_arg_parser():
"""
Create an argparse.ArgumentParser for run_mujoco.py.
"""
parser = arg_parser()
parser.add_argument('--env', help='environment ID', type=str, default='Reacher-v2')
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
parser.add_argument('--num-timesteps', type=int, default=int(1e6))
parser.add_argument('--seed', help='RNG seed', type=int, default=None)
parser.add_argument('--alg', help='Algorithm', type=str, default='ppo2')
parser.add_argument('--num-timesteps', type=float, default=1e6),
parser.add_argument('--network', help='network type (mlp, cnn, lstm, cnn_lstm, conv_only)', default=None)
parser.add_argument('--gamestate', help='game state to load (so far only used in retro games)', default=None)
parser.add_argument('--num-env', help='Number of environment copies being run in parallel. When not specified, set to number of cpus for Atari, and to 1 for Mujoco', default=None, type=int)
parser.add_argument('--reward-scale', help='Reward scale factor. Default: 1.0', default=1.0, type=float)
parser.add_argument('--model-path', help='Path to save and load trained models from', default=None, type=str)
parser.add_argument('--play', default=False, action='store_true')
return parser
@@ -85,6 +105,24 @@ def robotics_arg_parser():
"""
parser = arg_parser()
parser.add_argument('--env', help='environment ID', type=str, default='FetchReach-v0')
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
parser.add_argument('--seed', help='RNG seed', type=int, default=None)
parser.add_argument('--num-timesteps', type=int, default=int(1e6))
return parser
def parse_unknown_args(args):
"""
Parse arguments not consumed by arg parser into a dicitonary
"""
retval = {}
for arg in args:
assert arg.startswith('--')
assert '=' in arg, 'cannot parse arg {}'.format(arg)
key = arg.split('=')[0][2:]
value = arg.split('=')[1]
retval[key] = value
return retval

View File

@@ -85,7 +85,7 @@ class DiagGaussianPdType(PdType):
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
mean = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
logstd = tf.get_variable(name='logstd', shape=[1, self.size], initializer=tf.zeros_initializer())
logstd = tf.get_variable(name='pi/logstd', shape=[1, self.size], initializer=tf.zeros_initializer())
pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
return self.pdfromflat(pdparam), mean
@@ -143,26 +143,26 @@ class CategoricalPd(Pd):
# Note: we can't use sparse_softmax_cross_entropy_with_logits because
# the implementation does not allow second-order derivatives...
one_hot_actions = tf.one_hot(x, self.logits.get_shape().as_list()[-1])
return tf.nn.softmax_cross_entropy_with_logits(
return tf.nn.softmax_cross_entropy_with_logits_v2(
logits=self.logits,
labels=one_hot_actions)
def kl(self, other):
a0 = self.logits - tf.reduce_max(self.logits, axis=-1, keep_dims=True)
a1 = other.logits - tf.reduce_max(other.logits, axis=-1, keep_dims=True)
a0 = self.logits - tf.reduce_max(self.logits, axis=-1, keepdims=True)
a1 = other.logits - tf.reduce_max(other.logits, axis=-1, keepdims=True)
ea0 = tf.exp(a0)
ea1 = tf.exp(a1)
z0 = tf.reduce_sum(ea0, axis=-1, keep_dims=True)
z1 = tf.reduce_sum(ea1, axis=-1, keep_dims=True)
z0 = tf.reduce_sum(ea0, axis=-1, keepdims=True)
z1 = tf.reduce_sum(ea1, axis=-1, keepdims=True)
p0 = ea0 / z0
return tf.reduce_sum(p0 * (a0 - tf.log(z0) - a1 + tf.log(z1)), axis=-1)
def entropy(self):
a0 = self.logits - tf.reduce_max(self.logits, axis=-1, keep_dims=True)
a0 = self.logits - tf.reduce_max(self.logits, axis=-1, keepdims=True)
ea0 = tf.exp(a0)
z0 = tf.reduce_sum(ea0, axis=-1, keep_dims=True)
z0 = tf.reduce_sum(ea0, axis=-1, keepdims=True)
p0 = ea0 / z0
return tf.reduce_sum(p0 * (tf.log(z0) - a0), axis=-1)
def sample(self):
u = tf.random_uniform(tf.shape(self.logits))
u = tf.random_uniform(tf.shape(self.logits), dtype=self.logits.dtype)
return tf.argmax(self.logits - tf.log(-tf.log(u)), axis=-1)
@classmethod
def fromflat(cls, flat):

View File

@@ -1,30 +1,56 @@
import tensorflow as tf
from gym.spaces import Discrete, Box
def observation_input(ob_space, batch_size=None, name='Ob'):
'''
Build observation input with encoding depending on the
observation space type
Params:
def observation_placeholder(ob_space, batch_size=None, name='Ob'):
'''
Create placeholder to feed observations into of the size appropriate to the observation space
ob_space: observation space (should be one of gym.spaces)
batch_size: batch size for input (default is None, so that resulting input placeholder can take tensors with any batch size)
name: tensorflow variable name for input placeholder
Parameters:
----------
returns: tuple (input_placeholder, processed_input_tensor)
ob_space: gym.Space observation space
batch_size: int size of the batch to be fed into input. Can be left None in most cases.
name: str name of the placeholder
Returns:
-------
tensorflow placeholder tensor
'''
assert isinstance(ob_space, Discrete) or isinstance(ob_space, Box), \
'Can only deal with Discrete and Box observation spaces for now'
return tf.placeholder(shape=(batch_size,) + ob_space.shape, dtype=ob_space.dtype, name=name)
def observation_input(ob_space, batch_size=None, name='Ob'):
'''
Create placeholder to feed observations into of the size appropriate to the observation space, and add input
encoder of the appropriate type.
'''
placeholder = observation_placeholder(ob_space, batch_size, name)
return placeholder, encode_observation(ob_space, placeholder)
def encode_observation(ob_space, placeholder):
'''
Encode input in the way that is appropriate to the observation space
Parameters:
----------
ob_space: gym.Space observation space
placeholder: tf.placeholder observation input placeholder
'''
if isinstance(ob_space, Discrete):
input_x = tf.placeholder(shape=(batch_size,), dtype=tf.int32, name=name)
processed_x = tf.to_float(tf.one_hot(input_x, ob_space.n))
return input_x, processed_x
return tf.to_float(tf.one_hot(placeholder, ob_space.n))
elif isinstance(ob_space, Box):
input_shape = (batch_size,) + ob_space.shape
input_x = tf.placeholder(shape=input_shape, dtype=ob_space.dtype, name=name)
processed_x = tf.to_float(input_x)
return input_x, processed_x
return tf.to_float(placeholder)
else:
raise NotImplementedError

View File

@@ -67,14 +67,21 @@ class EzPickle(object):
def set_global_seeds(i):
try:
import MPI
rank = MPI.COMM_WORLD.Get_rank()
except ImportError:
rank = 0
myseed = i + 1000 * rank if i is not None else None
try:
import tensorflow as tf
except ImportError:
pass
else:
tf.set_random_seed(i)
np.random.seed(i)
random.seed(i)
tf.set_random_seed(myseed)
np.random.seed(myseed)
random.seed(myseed)
def pretty_eta(seconds_left):

View File

@@ -5,7 +5,7 @@ class AbstractEnvRunner(ABC):
def __init__(self, *, env, model, nsteps):
self.env = env
self.model = model
nenv = env.num_envs
self.nenv = nenv = env.num_envs if hasattr(env, 'num_envs') else 1
self.batch_ob_shape = (nenv*nsteps,) + env.observation_space.shape
self.obs = np.zeros((nenv,) + env.observation_space.shape, dtype=env.observation_space.dtype.name)
self.obs[:] = env.reset()
@@ -16,3 +16,4 @@ class AbstractEnvRunner(ABC):
@abstractmethod
def run(self):
raise NotImplementedError

View File

@@ -1,44 +0,0 @@
import pytest
import tensorflow as tf
import random
import numpy as np
from gym.spaces import np_random
from baselines.a2c import a2c
from baselines.ppo2 import ppo2
from baselines.common.identity_env import IdentityEnv
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from baselines.ppo2.policies import MlpPolicy
learn_func_list = [
lambda e: a2c.learn(policy=MlpPolicy, env=e, seed=0, total_timesteps=50000),
lambda e: ppo2.learn(policy=MlpPolicy, env=e, total_timesteps=50000, lr=1e-3, nsteps=128, ent_coef=0.01)
]
@pytest.mark.slow
@pytest.mark.parametrize("learn_func", learn_func_list)
def test_identity(learn_func):
'''
Test if the algorithm (with a given policy)
can learn an identity transformation (i.e. return observation as an action)
'''
np.random.seed(0)
np_random.seed(0)
random.seed(0)
env = DummyVecEnv([lambda: IdentityEnv(10)])
with tf.Graph().as_default(), tf.Session().as_default():
tf.set_random_seed(0)
model = learn_func(env)
N_TRIALS = 1000
sum_rew = 0
obs = env.reset()
for i in range(N_TRIALS):
obs, rew, done, _ = env.step(model.step(obs)[0])
sum_rew += rew
assert sum_rew > 0.9 * N_TRIALS

View File

@@ -48,17 +48,28 @@ def huber_loss(x, delta=1.0):
# Global session
# ================================================================
def make_session(num_cpu=None, make_default=False, graph=None):
def get_session(config=None):
"""Get default session or create one with a given config"""
sess = tf.get_default_session()
if sess is None:
sess = make_session(config=config, make_default=True)
return sess
def make_session(config=None, num_cpu=None, make_default=False, graph=None):
"""Returns a session that will use <num_cpu> CPU's only"""
if num_cpu is None:
num_cpu = int(os.getenv('RCALL_NUM_CPU', multiprocessing.cpu_count()))
tf_config = tf.ConfigProto(
inter_op_parallelism_threads=num_cpu,
intra_op_parallelism_threads=num_cpu)
if config is None:
config = tf.ConfigProto(
allow_soft_placement=True,
inter_op_parallelism_threads=num_cpu,
intra_op_parallelism_threads=num_cpu)
config.gpu_options.allow_growth = True
if make_default:
return tf.InteractiveSession(config=tf_config, graph=graph)
return tf.InteractiveSession(config=config, graph=graph)
else:
return tf.Session(config=tf_config, graph=graph)
return tf.Session(config=config, graph=graph)
def single_threaded_session():
"""Returns a session which will only use a single CPU"""
@@ -76,7 +87,7 @@ ALREADY_INITIALIZED = set()
def initialize():
"""Initialize all the uninitialized variables in the global scope."""
new_variables = set(tf.global_variables()) - ALREADY_INITIALIZED
tf.get_default_session().run(tf.variables_initializer(new_variables))
get_session().run(tf.variables_initializer(new_variables))
ALREADY_INITIALIZED.update(new_variables)
# ================================================================
@@ -85,7 +96,7 @@ def initialize():
def normc_initializer(std=1.0, axis=0):
def _initializer(shape, dtype=None, partition_info=None): # pylint: disable=W0613
out = np.random.randn(*shape).astype(np.float32)
out = np.random.randn(*shape).astype(dtype.as_numpy_dtype)
out *= std / np.sqrt(np.square(out).sum(axis=axis, keepdims=True))
return tf.constant(out)
return _initializer
@@ -179,7 +190,7 @@ class _Function(object):
if hasattr(inpt, 'make_feed_dict'):
feed_dict.update(inpt.make_feed_dict(value))
else:
feed_dict[inpt] = value
feed_dict[inpt] = adjust_shape(inpt, value)
def __call__(self, *args):
assert len(args) <= len(self.inputs), "Too many arguments provided"
@@ -189,8 +200,8 @@ class _Function(object):
self._feed_input(feed_dict, inpt, value)
# Update feed dict with givens.
for inpt in self.givens:
feed_dict[inpt] = feed_dict.get(inpt, self.givens[inpt])
results = tf.get_default_session().run(self.outputs_update, feed_dict=feed_dict)[:-1]
feed_dict[inpt] = adjust_shape(inpt, feed_dict.get(inpt, self.givens[inpt]))
results = get_session().run(self.outputs_update, feed_dict=feed_dict)[:-1]
return results
# ================================================================
@@ -243,27 +254,34 @@ class GetFlat(object):
def __call__(self):
return tf.get_default_session().run(self.op)
def flattenallbut0(x):
return tf.reshape(x, [-1, intprod(x.get_shape().as_list()[1:])])
# =============================================================
# TF placeholders management
# ============================================================
_PLACEHOLDER_CACHE = {} # name -> (placeholder, dtype, shape)
def get_placeholder(name, dtype, shape):
if name in _PLACEHOLDER_CACHE:
out, dtype1, shape1 = _PLACEHOLDER_CACHE[name]
assert dtype1 == dtype and shape1 == shape
return out
else:
out = tf.placeholder(dtype=dtype, shape=shape, name=name)
_PLACEHOLDER_CACHE[name] = (out, dtype, shape)
return out
if out.graph == tf.get_default_graph():
assert dtype1 == dtype and shape1 == shape, \
'Placeholder with name {} has already been registered and has shape {}, different from requested {}'.format(name, shape1, shape)
return out
out = tf.placeholder(dtype=dtype, shape=shape, name=name)
_PLACEHOLDER_CACHE[name] = (out, dtype, shape)
return out
def get_placeholder_cached(name):
return _PLACEHOLDER_CACHE[name][0]
def flattenallbut0(x):
return tf.reshape(x, [-1, intprod(x.get_shape().as_list()[1:])])
# ================================================================
# Diagnostics
# Diagnostics
# ================================================================
def display_var_info(vars):
@@ -283,7 +301,7 @@ def display_var_info(vars):
def get_available_gpus():
# recipe from here:
# https://stackoverflow.com/questions/38559755/how-to-get-current-available-gpus-in-tensorflow?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
from tensorflow.python.client import device_lib
local_device_protos = device_lib.list_local_devices()
return [x.name for x in local_device_protos if x.device_type == 'GPU']
@@ -301,4 +319,61 @@ def save_state(fname):
saver = tf.train.Saver()
saver.save(tf.get_default_session(), fname)
# ================================================================
# Shape adjustment for feeding into tf placeholders
# ================================================================
def adjust_shape(placeholder, data):
'''
adjust shape of the data to the shape of the placeholder if possible.
If shape is incompatible, AssertionError is thrown
Parameters:
placeholder tensorflow input placeholder
data input data to be (potentially) reshaped to be fed into placeholder
Returns:
reshaped data
'''
if not isinstance(data, np.ndarray) and not isinstance(data, list):
return data
if isinstance(data, list):
data = np.array(data)
placeholder_shape = [x or -1 for x in placeholder.shape.as_list()]
assert _check_shape(placeholder_shape, data.shape), \
'Shape of data {} is not compatible with shape of the placeholder {}'.format(data.shape, placeholder_shape)
return np.reshape(data, placeholder_shape)
def _check_shape(placeholder_shape, data_shape):
''' check if two shapes are compatible (i.e. differ only by dimensions of size 1, or by the batch dimension)'''
return True
squeezed_placeholder_shape = _squeeze_shape(placeholder_shape)
squeezed_data_shape = _squeeze_shape(data_shape)
for i, s_data in enumerate(squeezed_data_shape):
s_placeholder = squeezed_placeholder_shape[i]
if s_placeholder != -1 and s_data != s_placeholder:
return False
return True
def _squeeze_shape(shape):
return [x for x in shape if x != 1]
# Tensorboard interfacing
# ================================================================
def launch_tensorboard_in_background(log_dir):
from tensorboard import main as tb
import threading
tf.flags.FLAGS.logdir = log_dir
t = threading.Thread(target=tb.main, args=([]))
t.start()

View File

@@ -30,15 +30,30 @@ class DummyVecEnv(VecEnv):
self.actions = None
def step_async(self, actions):
self.actions = actions
listify = True
try:
if len(actions) == self.num_envs:
listify = False
except TypeError:
pass
if not listify:
self.actions = actions
else:
assert self.num_envs == 1, "actions {} is either not a list or has a wrong size - cannot match to {} environments".format(actions, self.num_envs)
self.actions = [actions]
def step_wait(self):
for e in range(self.num_envs):
obs, self.buf_rews[e], self.buf_dones[e], self.buf_infos[e] = self.envs[e].step(self.actions[e])
action = self.actions[e]
if isinstance(self.envs[e].action_space, spaces.Discrete):
action = int(action)
obs, self.buf_rews[e], self.buf_dones[e], self.buf_infos[e] = self.envs[e].step(action)
if self.buf_dones[e]:
obs = self.envs[e].reset()
self._save_obs(e, obs)
return (self._obs_from_buf(), np.copy(self.buf_rews), np.copy(self.buf_dones),
return (np.copy(self._obs_from_buf()), np.copy(self.buf_rews), np.copy(self.buf_dones),
self.buf_infos.copy())
def reset(self):

View File

@@ -7,26 +7,30 @@ from baselines.common.tile_images import tile_images
def worker(remote, parent_remote, env_fn_wrapper):
parent_remote.close()
env = env_fn_wrapper.x()
while True:
cmd, data = remote.recv()
if cmd == 'step':
ob, reward, done, info = env.step(data)
if done:
try:
while True:
cmd, data = remote.recv()
if cmd == 'step':
ob, reward, done, info = env.step(data)
if done:
ob = env.reset()
remote.send((ob, reward, done, info))
elif cmd == 'reset':
ob = env.reset()
remote.send((ob, reward, done, info))
elif cmd == 'reset':
ob = env.reset()
remote.send(ob)
elif cmd == 'render':
remote.send(env.render(mode='rgb_array'))
elif cmd == 'close':
remote.close()
break
elif cmd == 'get_spaces':
remote.send((env.observation_space, env.action_space))
else:
raise NotImplementedError
remote.send(ob)
elif cmd == 'render':
remote.send(env.render(mode='rgb_array'))
elif cmd == 'close':
remote.close()
break
elif cmd == 'get_spaces':
remote.send((env.observation_space, env.action_space))
else:
raise NotImplementedError
except KeyboardInterrupt:
print('SubprocVecEnv worker: got KeyboardInterrupt')
finally:
env.close()
class SubprocVecEnv(VecEnv):
def __init__(self, env_fns, spaces=None):

View File

@@ -26,9 +26,9 @@ def reduce_std(x, axis=None, keepdims=False):
return tf.sqrt(reduce_var(x, axis=axis, keepdims=keepdims))
def reduce_var(x, axis=None, keepdims=False):
m = tf.reduce_mean(x, axis=axis, keep_dims=True)
m = tf.reduce_mean(x, axis=axis, keepdims=True)
devs_squared = tf.square(x - m)
return tf.reduce_mean(devs_squared, axis=axis, keep_dims=keepdims)
return tf.reduce_mean(devs_squared, axis=axis, keepdims=keepdims)
def get_target_updates(vars, target_vars, tau):
logger.info('setting up target updates ...')

View File

@@ -1,8 +1,8 @@
from baselines.deepq import models # noqa
from baselines.deepq.build_graph import build_act, build_train # noqa
from baselines.deepq.simple import learn, load # noqa
from baselines.deepq.deepq import learn, load # noqa
from baselines.deepq.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer # noqa
def wrap_atari_dqn(env):
from baselines.common.atari_wrappers import wrap_deepmind
return wrap_deepmind(env, frame_stack=True, scale=True)
return wrap_deepmind(env, frame_stack=True, scale=True)

View File

@@ -89,3 +89,41 @@ def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False):
return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
def build_q_func(network, hiddens=[256], dueling=True, layer_norm=False, **network_kwargs):
if isinstance(network, str):
from baselines.common.models import get_network_builder
network = get_network_builder(network)(**network_kwargs)
def q_func_builder(input_placeholder, num_actions, scope, reuse=False):
with tf.variable_scope(scope, reuse=reuse):
latent, _ = network(input_placeholder)
latent = layers.flatten(latent)
with tf.variable_scope("action_value"):
action_out = latent
for hidden in hiddens:
action_out = layers.fully_connected(action_out, num_outputs=hidden, activation_fn=None)
if layer_norm:
action_out = layers.layer_norm(action_out, center=True, scale=True)
action_out = tf.nn.relu(action_out)
action_scores = layers.fully_connected(action_out, num_outputs=num_actions, activation_fn=None)
if dueling:
with tf.variable_scope("state_value"):
state_out = latent
for hidden in hiddens:
state_out = layers.fully_connected(state_out, num_outputs=hidden, activation_fn=None)
if layer_norm:
state_out = layers.layer_norm(state_out, center=True, scale=True)
state_out = tf.nn.relu(state_out)
state_score = layers.fully_connected(state_out, num_outputs=1, activation_fn=None)
action_scores_mean = tf.reduce_mean(action_scores, 1)
action_scores_centered = action_scores - tf.expand_dims(action_scores_mean, 1)
q_out = state_score + action_scores_centered
else:
q_out = action_scores
return q_out
return q_func_builder

View File

@@ -1,306 +0,0 @@
import os
import tempfile
import tensorflow as tf
import zipfile
import cloudpickle
import numpy as np
import baselines.common.tf_util as U
from baselines.common.tf_util import load_state, save_state
from baselines import logger
from baselines.common.schedules import LinearSchedule
from baselines.common.input import observation_input
from baselines import deepq
from baselines.deepq.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer
from baselines.deepq.utils import ObservationInput
class ActWrapper(object):
def __init__(self, act, act_params):
self._act = act
self._act_params = act_params
@staticmethod
def load(path):
with open(path, "rb") as f:
model_data, act_params = cloudpickle.load(f)
act = deepq.build_act(**act_params)
sess = tf.Session()
sess.__enter__()
with tempfile.TemporaryDirectory() as td:
arc_path = os.path.join(td, "packed.zip")
with open(arc_path, "wb") as f:
f.write(model_data)
zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td)
load_state(os.path.join(td, "model"))
return ActWrapper(act, act_params)
def __call__(self, *args, **kwargs):
return self._act(*args, **kwargs)
def save(self, path=None):
"""Save model to a pickle located at `path`"""
if path is None:
path = os.path.join(logger.get_dir(), "model.pkl")
with tempfile.TemporaryDirectory() as td:
save_state(os.path.join(td, "model"))
arc_name = os.path.join(td, "packed.zip")
with zipfile.ZipFile(arc_name, 'w') as zipf:
for root, dirs, files in os.walk(td):
for fname in files:
file_path = os.path.join(root, fname)
if file_path != arc_name:
zipf.write(file_path, os.path.relpath(file_path, td))
with open(arc_name, "rb") as f:
model_data = f.read()
with open(path, "wb") as f:
cloudpickle.dump((model_data, self._act_params), f)
def load(path):
"""Load act function that was returned by learn function.
Parameters
----------
path: str
path to the act function pickle
Returns
-------
act: ActWrapper
function that takes a batch of observations
and returns actions.
"""
return ActWrapper.load(path)
def learn(env,
q_func,
lr=5e-4,
max_timesteps=100000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
train_freq=1,
batch_size=32,
print_freq=100,
checkpoint_freq=10000,
checkpoint_path=None,
learning_starts=1000,
gamma=1.0,
target_network_update_freq=500,
prioritized_replay=False,
prioritized_replay_alpha=0.6,
prioritized_replay_beta0=0.4,
prioritized_replay_beta_iters=None,
prioritized_replay_eps=1e-6,
param_noise=False,
callback=None):
"""Train a deepq model.
Parameters
-------
env: gym.Env
environment to train on
q_func: (tf.Variable, int, str, bool) -> tf.Variable
the model that takes the following inputs:
observation_in: object
the output of observation placeholder
num_actions: int
number of actions
scope: str
reuse: bool
should be passed to outer variable scope
and returns a tensor of shape (batch_size, num_actions) with values of every action.
lr: float
learning rate for adam optimizer
max_timesteps: int
number of env steps to optimizer for
buffer_size: int
size of the replay buffer
exploration_fraction: float
fraction of entire training period over which the exploration rate is annealed
exploration_final_eps: float
final value of random action probability
train_freq: int
update the model every `train_freq` steps.
set to None to disable printing
batch_size: int
size of a batched sampled from replay buffer for training
print_freq: int
how often to print out training progress
set to None to disable printing
checkpoint_freq: int
how often to save the model. This is so that the best version is restored
at the end of the training. If you do not wish to restore the best version at
the end of the training set this variable to None.
learning_starts: int
how many steps of the model to collect transitions for before learning starts
gamma: float
discount factor
target_network_update_freq: int
update the target network every `target_network_update_freq` steps.
prioritized_replay: True
if True prioritized replay buffer will be used.
prioritized_replay_alpha: float
alpha parameter for prioritized replay buffer
prioritized_replay_beta0: float
initial value of beta for prioritized replay buffer
prioritized_replay_beta_iters: int
number of iterations over which beta will be annealed from initial value
to 1.0. If set to None equals to max_timesteps.
prioritized_replay_eps: float
epsilon to add to the TD errors when updating priorities.
callback: (locals, globals) -> None
function called at every steps with state of the algorithm.
If callback returns true training stops.
Returns
-------
act: ActWrapper
Wrapper over act function. Adds ability to save it and load it.
See header of baselines/deepq/categorical.py for details on the act function.
"""
# Create all the functions necessary to train the model
sess = tf.Session()
sess.__enter__()
# capture the shape outside the closure so that the env object is not serialized
# by cloudpickle when serializing make_obs_ph
def make_obs_ph(name):
return ObservationInput(env.observation_space, name=name)
act, train, update_target, debug = deepq.build_train(
make_obs_ph=make_obs_ph,
q_func=q_func,
num_actions=env.action_space.n,
optimizer=tf.train.AdamOptimizer(learning_rate=lr),
gamma=gamma,
grad_norm_clipping=10,
param_noise=param_noise
)
act_params = {
'make_obs_ph': make_obs_ph,
'q_func': q_func,
'num_actions': env.action_space.n,
}
act = ActWrapper(act, act_params)
# Create the replay buffer
if prioritized_replay:
replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
if prioritized_replay_beta_iters is None:
prioritized_replay_beta_iters = max_timesteps
beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
initial_p=prioritized_replay_beta0,
final_p=1.0)
else:
replay_buffer = ReplayBuffer(buffer_size)
beta_schedule = None
# Create the schedule for exploration starting from 1.
exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
initial_p=1.0,
final_p=exploration_final_eps)
# Initialize the parameters and copy them to the target network.
U.initialize()
update_target()
episode_rewards = [0.0]
saved_mean_reward = None
obs = env.reset()
reset = True
with tempfile.TemporaryDirectory() as td:
td = checkpoint_path or td
model_file = os.path.join(td, "model")
model_saved = False
if tf.train.latest_checkpoint(td) is not None:
load_state(model_file)
logger.log('Loaded model from {}'.format(model_file))
model_saved = True
for t in range(max_timesteps):
if callback is not None:
if callback(locals(), globals()):
break
# Take action and update exploration to the newest value
kwargs = {}
if not param_noise:
update_eps = exploration.value(t)
update_param_noise_threshold = 0.
else:
update_eps = 0.
# Compute the threshold such that the KL divergence between perturbed and non-perturbed
# policy is comparable to eps-greedy exploration with eps = exploration.value(t).
# See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
# for detailed explanation.
update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
kwargs['reset'] = reset
kwargs['update_param_noise_threshold'] = update_param_noise_threshold
kwargs['update_param_noise_scale'] = True
action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
env_action = action
reset = False
new_obs, rew, done, _ = env.step(env_action)
# Store transition in the replay buffer.
replay_buffer.add(obs, action, rew, new_obs, float(done))
obs = new_obs
episode_rewards[-1] += rew
if done:
obs = env.reset()
episode_rewards.append(0.0)
reset = True
if t > learning_starts and t % train_freq == 0:
# Minimize the error in Bellman's equation on a batch sampled from replay buffer.
if prioritized_replay:
experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
(obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
else:
obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
weights, batch_idxes = np.ones_like(rewards), None
td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
if prioritized_replay:
new_priorities = np.abs(td_errors) + prioritized_replay_eps
replay_buffer.update_priorities(batch_idxes, new_priorities)
if t > learning_starts and t % target_network_update_freq == 0:
# Update target network periodically.
update_target()
mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
num_episodes = len(episode_rewards)
if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
logger.record_tabular("steps", t)
logger.record_tabular("episodes", num_episodes)
logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
logger.dump_tabular()
if (checkpoint_freq is not None and t > learning_starts and
num_episodes > 100 and t % checkpoint_freq == 0):
if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
if print_freq is not None:
logger.log("Saving model due to mean reward increase: {} -> {}".format(
saved_mean_reward, mean_100ep_reward))
save_state(model_file)
model_saved = True
saved_mean_reward = mean_100ep_reward
if model_saved:
if print_freq is not None:
logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
load_state(model_file)
return act

View File

@@ -1,43 +0,0 @@
import tensorflow as tf
import random
from baselines import deepq
from baselines.common.identity_env import IdentityEnv
def test_identity():
with tf.Graph().as_default():
env = IdentityEnv(10)
random.seed(0)
tf.set_random_seed(0)
param_noise = False
model = deepq.models.mlp([32])
act = deepq.learn(
env,
q_func=model,
lr=1e-3,
max_timesteps=10000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
param_noise=param_noise,
)
tf.set_random_seed(0)
N_TRIALS = 1000
sum_rew = 0
obs = env.reset()
for i in range(N_TRIALS):
obs, rew, done, _ = env.step(act([obs]))
sum_rew += rew
assert sum_rew > 0.9 * N_TRIALS
if __name__ == '__main__':
test_identity()

View File

@@ -1,4 +1,5 @@
from baselines.common.input import observation_input
from baselines.common.tf_util import adjust_shape
import tensorflow as tf
@@ -36,7 +37,7 @@ class PlaceholderTfInput(TfInput):
return self._placeholder
def make_feed_dict(self, data):
return {self._placeholder: data}
return {self._placeholder: adjust_shape(self._placeholder, data)}
class Uint8Input(PlaceholderTfInput):

View File

@@ -18,7 +18,7 @@ def train(env_id, num_timesteps, seed):
logger.configure()
else:
logger.configure(format_strs=[])
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank() if seed is not None else None
set_global_seeds(workerseed)
env = make_atari(env_id)
def policy_fn(name, ob_space, ac_space): #pylint: disable=W0613

View File

@@ -1,146 +0,0 @@
import numpy as np
import tensorflow as tf
from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch, lstm, lnlstm
from baselines.common.distributions import make_pdtype
from baselines.common.input import observation_input
def nature_cnn(unscaled_images, **conv_kwargs):
"""
CNN from Nature paper.
"""
scaled_images = tf.cast(unscaled_images, tf.float32) / 255.
activ = tf.nn.relu
h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2),
**conv_kwargs))
h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs))
h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs))
h3 = conv_to_fc(h3)
return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
class LnLstmPolicy(object):
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
nenv = nbatch // nsteps
X, processed_x = observation_input(ob_space, nbatch)
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
self.pdtype = make_pdtype(ac_space)
with tf.variable_scope("model", reuse=reuse):
h = nature_cnn(processed_x)
xs = batch_to_seq(h, nenv, nsteps)
ms = batch_to_seq(M, nenv, nsteps)
h5, snew = lnlstm(xs, ms, S, 'lstm1', nh=nlstm)
h5 = seq_to_batch(h5)
vf = fc(h5, 'v', 1)
self.pd, self.pi = self.pdtype.pdfromlatent(h5)
v0 = vf[:, 0]
a0 = self.pd.sample()
neglogp0 = self.pd.neglogp(a0)
self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)
def step(ob, state, mask):
return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask})
def value(ob, state, mask):
return sess.run(v0, {X:ob, S:state, M:mask})
self.X = X
self.M = M
self.S = S
self.vf = vf
self.step = step
self.value = value
class LstmPolicy(object):
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
nenv = nbatch // nsteps
self.pdtype = make_pdtype(ac_space)
X, processed_x = observation_input(ob_space, nbatch)
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
with tf.variable_scope("model", reuse=reuse):
h = nature_cnn(X)
xs = batch_to_seq(h, nenv, nsteps)
ms = batch_to_seq(M, nenv, nsteps)
h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm)
h5 = seq_to_batch(h5)
vf = fc(h5, 'v', 1)
self.pd, self.pi = self.pdtype.pdfromlatent(h5)
v0 = vf[:, 0]
a0 = self.pd.sample()
neglogp0 = self.pd.neglogp(a0)
self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)
def step(ob, state, mask):
return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask})
def value(ob, state, mask):
return sess.run(v0, {X:ob, S:state, M:mask})
self.X = X
self.M = M
self.S = S
self.vf = vf
self.step = step
self.value = value
class CnnPolicy(object):
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False, **conv_kwargs): #pylint: disable=W0613
self.pdtype = make_pdtype(ac_space)
X, processed_x = observation_input(ob_space, nbatch)
with tf.variable_scope("model", reuse=reuse):
h = nature_cnn(processed_x, **conv_kwargs)
vf = fc(h, 'v', 1)[:,0]
self.pd, self.pi = self.pdtype.pdfromlatent(h, init_scale=0.01)
a0 = self.pd.sample()
neglogp0 = self.pd.neglogp(a0)
self.initial_state = None
def step(ob, *_args, **_kwargs):
a, v, neglogp = sess.run([a0, vf, neglogp0], {X:ob})
return a, v, self.initial_state, neglogp
def value(ob, *_args, **_kwargs):
return sess.run(vf, {X:ob})
self.X = X
self.vf = vf
self.step = step
self.value = value
class MlpPolicy(object):
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False): #pylint: disable=W0613
self.pdtype = make_pdtype(ac_space)
with tf.variable_scope("model", reuse=reuse):
X, processed_x = observation_input(ob_space, nbatch)
activ = tf.tanh
processed_x = tf.layers.flatten(processed_x)
pi_h1 = activ(fc(processed_x, 'pi_fc1', nh=64, init_scale=np.sqrt(2)))
pi_h2 = activ(fc(pi_h1, 'pi_fc2', nh=64, init_scale=np.sqrt(2)))
vf_h1 = activ(fc(processed_x, 'vf_fc1', nh=64, init_scale=np.sqrt(2)))
vf_h2 = activ(fc(vf_h1, 'vf_fc2', nh=64, init_scale=np.sqrt(2)))
vf = fc(vf_h2, 'vf', 1)[:,0]
self.pd, self.pi = self.pdtype.pdfromlatent(pi_h2, init_scale=0.01)
a0 = self.pd.sample()
neglogp0 = self.pd.neglogp(a0)
self.initial_state = None
def step(ob, *_args, **_kwargs):
a, v, neglogp = sess.run([a0, vf, neglogp0], {X:ob})
return a, v, self.initial_state, neglogp
def value(ob, *_args, **_kwargs):
return sess.run(vf, {X:ob})
self.X = X
self.vf = vf
self.step = step
self.value = value

View File

@@ -6,16 +6,24 @@ import os.path as osp
import tensorflow as tf
from baselines import logger
from collections import deque
from baselines.common import explained_variance
from baselines.common import explained_variance, set_global_seeds
from baselines.common.policies import build_policy
from baselines.common.runners import AbstractEnvRunner
from baselines.common.tf_util import get_session
from baselines.common.mpi_adam_optimizer import MpiAdamOptimizer
from mpi4py import MPI
from baselines.common.tf_util import initialize
from baselines.common.mpi_util import sync_from_root
class Model(object):
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
nsteps, ent_coef, vf_coef, max_grad_norm):
sess = tf.get_default_session()
sess = get_session()
act_model = policy(sess, ob_space, ac_space, nbatch_act, 1, reuse=False)
train_model = policy(sess, ob_space, ac_space, nbatch_train, nsteps, reuse=True)
with tf.variable_scope('ppo2_model', reuse=tf.AUTO_REUSE):
act_model = policy(nbatch_act, 1, sess)
train_model = policy(nbatch_train, nsteps, sess)
A = train_model.pdtype.sample_placeholder([None])
ADV = tf.placeholder(tf.float32, [None])
@@ -40,14 +48,16 @@ class Model(object):
approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - OLDNEGLOGPAC))
clipfrac = tf.reduce_mean(tf.to_float(tf.greater(tf.abs(ratio - 1.0), CLIPRANGE)))
loss = pg_loss - entropy * ent_coef + vf_loss * vf_coef
with tf.variable_scope('model'):
params = tf.trainable_variables()
grads = tf.gradients(loss, params)
params = tf.trainable_variables('ppo2_model')
trainer = MpiAdamOptimizer(MPI.COMM_WORLD, learning_rate=LR, epsilon=1e-5)
grads_and_var = trainer.compute_gradients(loss, params)
grads, var = zip(*grads_and_var)
if max_grad_norm is not None:
grads, _grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
grads = list(zip(grads, params))
trainer = tf.train.AdamOptimizer(learning_rate=LR, epsilon=1e-5)
_train = trainer.apply_gradients(grads)
grads_and_var = list(zip(grads, var))
_train = trainer.apply_gradients(grads_and_var)
def train(lr, cliprange, obs, returns, masks, actions, values, neglogpacs, states=None):
advs = returns - values
@@ -83,7 +93,11 @@ class Model(object):
self.initial_state = act_model.initial_state
self.save = save
self.load = load
tf.global_variables_initializer().run(session=sess) #pylint: disable=E1101
if MPI.COMM_WORLD.Get_rank() == 0:
initialize()
global_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="")
sync_from_root(sess, global_variables) #pylint: disable=E1101
class Runner(AbstractEnvRunner):
@@ -97,7 +111,7 @@ class Runner(AbstractEnvRunner):
mb_states = self.states
epinfos = []
for _ in range(self.nsteps):
actions, values, self.states, neglogpacs = self.model.step(self.obs, self.states, self.dones)
actions, values, self.states, neglogpacs = self.model.step(self.obs, S=self.states, M=self.dones)
mb_obs.append(self.obs.copy())
mb_actions.append(actions)
mb_values.append(values)
@@ -115,7 +129,7 @@ class Runner(AbstractEnvRunner):
mb_values = np.asarray(mb_values, dtype=np.float32)
mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32)
mb_dones = np.asarray(mb_dones, dtype=np.bool)
last_values = self.model.value(self.obs, self.states, self.dones)
last_values = self.model.value(self.obs, S=self.states, M=self.dones)
#discount/bootstrap off value fn
mb_returns = np.zeros_like(mb_rewards)
mb_advs = np.zeros_like(mb_rewards)
@@ -145,10 +159,65 @@ def constfn(val):
return val
return f
def learn(*, policy, env, nsteps, total_timesteps, ent_coef, lr,
def learn(*, network, env, total_timesteps, seed=None, nsteps=2048, ent_coef=0.0, lr=3e-4,
vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95,
log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2,
save_interval=0, load_path=None):
save_interval=0, load_path=None, **network_kwargs):
'''
Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347)
Parameters:
----------
network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list)
specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns
tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward
neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets.
See baselines.common/policies.py/lstm for more details on using recurrent nets in policies
env: baselines.common.vec_env.VecEnv environment. Needs to be vectorized for parallel environment simulation.
The environments produced by gym.make can be wrapped using baselines.common.vec_env.DummyVecEnv class.
nsteps: int number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where
nenv is number of environment copies simulated in parallel)
total_timesteps: int number of timesteps (i.e. number of actions taken in the environment)
ent_coef: float policy entropy coefficient in the optimization objective
lr: float or function learning rate, constant or a schedule function [0,1] -> R+ where 1 is beginning of the
training and 0 is the end of the training.
vf_coef: float value function loss coefficient in the optimization objective
max_grad_norm: float or None gradient norm clipping coefficient
gamma: float discounting factor
lam: float advantage estimation discounting factor (lambda in the paper)
log_interval: int number of timesteps between logging events
nminibatches: int number of training minibatches per update
noptepochs: int number of training epochs per update
cliprange: float or function clipping range, constant or schedule function [0,1] -> R+ where 1 is beginning of the training
and 0 is the end of the training
save_interval: int number of timesteps between saving events
load_path: str path to load the model from
**network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network
For instance, 'mlp' network architecture has arguments num_hidden and num_layers.
'''
set_global_seeds(seed)
if isinstance(lr, float): lr = constfn(lr)
else: assert callable(lr)
@@ -156,6 +225,8 @@ def learn(*, policy, env, nsteps, total_timesteps, ent_coef, lr,
else: assert callable(cliprange)
total_timesteps = int(total_timesteps)
policy = build_policy(env, network, **network_kwargs)
nenvs = env.num_envs
ob_space = env.observation_space
ac_space = env.action_space
@@ -180,7 +251,6 @@ def learn(*, policy, env, nsteps, total_timesteps, ent_coef, lr,
nupdates = total_timesteps//nbatch
for update in range(1, nupdates+1):
assert nbatch % nminibatches == 0
nbatch_train = nbatch // nminibatches
tstart = time.time()
frac = 1.0 - (update - 1.0) / nupdates
lrnow = lr(frac)
@@ -228,8 +298,9 @@ def learn(*, policy, env, nsteps, total_timesteps, ent_coef, lr,
logger.logkv('time_elapsed', tnow - tfirststart)
for (lossval, lossname) in zip(lossvals, model.loss_names):
logger.logkv(lossname, lossval)
logger.dumpkvs()
if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir():
if MPI.COMM_WORLD.Get_rank() == 0:
logger.dumpkvs()
if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir() and MPI.COMM_WORLD.Get_rank() == 0:
checkdir = osp.join(logger.get_dir(), 'checkpoints')
os.makedirs(checkdir, exist_ok=True)
savepath = osp.join(checkdir, '%.5i'%update)
@@ -240,3 +311,6 @@ def learn(*, policy, env, nsteps, total_timesteps, ent_coef, lr,
def safemean(xs):
return np.nan if len(xs) == 0 else np.mean(xs)

View File

@@ -1,40 +0,0 @@
#!/usr/bin/env python3
import sys
from baselines import logger
from baselines.common.cmd_util import make_atari_env, atari_arg_parser
from baselines.common.vec_env.vec_frame_stack import VecFrameStack
from baselines.ppo2 import ppo2
from baselines.ppo2.policies import CnnPolicy, LstmPolicy, LnLstmPolicy, MlpPolicy
import multiprocessing
import tensorflow as tf
def train(env_id, num_timesteps, seed, policy):
ncpu = multiprocessing.cpu_count()
if sys.platform == 'darwin': ncpu //= 2
config = tf.ConfigProto(allow_soft_placement=True,
intra_op_parallelism_threads=ncpu,
inter_op_parallelism_threads=ncpu)
config.gpu_options.allow_growth = True #pylint: disable=E1101
tf.Session(config=config).__enter__()
env = VecFrameStack(make_atari_env(env_id, 8, seed), 4)
policy = {'cnn' : CnnPolicy, 'lstm' : LstmPolicy, 'lnlstm' : LnLstmPolicy, 'mlp': MlpPolicy}[policy]
ppo2.learn(policy=policy, env=env, nsteps=128, nminibatches=4,
lam=0.95, gamma=0.99, noptepochs=4, log_interval=1,
ent_coef=.01,
lr=lambda f : f * 2.5e-4,
cliprange=lambda f : f * 0.1,
total_timesteps=int(num_timesteps * 1.1))
def main():
parser = atari_arg_parser()
parser.add_argument('--policy', help='Policy architecture', choices=['cnn', 'lstm', 'lnlstm', 'mlp'], default='cnn')
args = parser.parse_args()
logger.configure()
train(args.env, num_timesteps=args.num_timesteps, seed=args.seed,
policy=args.policy)
if __name__ == '__main__':
main()

View File

@@ -1,57 +0,0 @@
#!/usr/bin/env python3
import numpy as np
from baselines.common.cmd_util import mujoco_arg_parser
from baselines import bench, logger
def train(env_id, num_timesteps, seed):
from baselines.common import set_global_seeds
from baselines.common.vec_env.vec_normalize import VecNormalize
from baselines.ppo2 import ppo2
from baselines.ppo2.policies import MlpPolicy
import gym
import tensorflow as tf
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
ncpu = 1
config = tf.ConfigProto(allow_soft_placement=True,
intra_op_parallelism_threads=ncpu,
inter_op_parallelism_threads=ncpu)
tf.Session(config=config).__enter__()
def make_env():
env = gym.make(env_id)
env = bench.Monitor(env, logger.get_dir(), allow_early_resets=True)
return env
env = DummyVecEnv([make_env])
env = VecNormalize(env)
set_global_seeds(seed)
policy = MlpPolicy
model = ppo2.learn(policy=policy, env=env, nsteps=2048, nminibatches=32,
lam=0.95, gamma=0.99, noptepochs=10, log_interval=1,
ent_coef=0.0,
lr=3e-4,
cliprange=0.2,
total_timesteps=num_timesteps)
return model, env
def main():
args = mujoco_arg_parser().parse_args()
logger.configure()
model, env = train(args.env, num_timesteps=args.num_timesteps, seed=args.seed)
if args.play:
logger.log("Running trained model")
obs = np.zeros((env.num_envs,) + env.observation_space.shape)
obs[:] = env.reset()
while True:
actions = model.step(obs)[0]
obs[:] = env.step(actions)[0]
env.render()
if __name__ == '__main__':
main()

View File

@@ -1,56 +0,0 @@
import baselines.common.tf_util as U
import tensorflow as tf
import gym
from baselines.common.distributions import make_pdtype
class CnnPolicy(object):
recurrent = False
def __init__(self, name, ob_space, ac_space):
with tf.variable_scope(name):
self._init(ob_space, ac_space)
self.scope = tf.get_variable_scope().name
def _init(self, ob_space, ac_space):
assert isinstance(ob_space, gym.spaces.Box)
self.pdtype = pdtype = make_pdtype(ac_space)
sequence_length = None
ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))
obscaled = ob / 255.0
with tf.variable_scope("pol"):
x = obscaled
x = tf.nn.relu(U.conv2d(x, 8, "l1", [8, 8], [4, 4], pad="VALID"))
x = tf.nn.relu(U.conv2d(x, 16, "l2", [4, 4], [2, 2], pad="VALID"))
x = U.flattenallbut0(x)
x = tf.nn.relu(tf.layers.dense(x, 128, name='lin', kernel_initializer=U.normc_initializer(1.0)))
logits = tf.layers.dense(x, pdtype.param_shape()[0], name='logits', kernel_initializer=U.normc_initializer(0.01))
self.pd = pdtype.pdfromflat(logits)
with tf.variable_scope("vf"):
x = obscaled
x = tf.nn.relu(U.conv2d(x, 8, "l1", [8, 8], [4, 4], pad="VALID"))
x = tf.nn.relu(U.conv2d(x, 16, "l2", [4, 4], [2, 2], pad="VALID"))
x = U.flattenallbut0(x)
x = tf.nn.relu(tf.layers.dense(x, 128, name='lin', kernel_initializer=U.normc_initializer(1.0)))
self.vpred = tf.layers.dense(x, 1, name='value', kernel_initializer=U.normc_initializer(1.0))
self.vpredz = self.vpred
self.state_in = []
self.state_out = []
stochastic = tf.placeholder(dtype=tf.bool, shape=())
ac = self.pd.sample()
self._act = U.function([stochastic, ob], [ac, self.vpred])
def act(self, stochastic, ob):
ac1, vpred1 = self._act(stochastic, ob[None])
return ac1[0], vpred1[0]
def get_variables(self):
return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, self.scope)
def get_trainable_variables(self):
return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope)
def get_initial_state(self):
return []

View File

@@ -1,43 +0,0 @@
#!/usr/bin/env python3
from mpi4py import MPI
from baselines.common import set_global_seeds
import os.path as osp
import gym, logging
from baselines import logger
from baselines import bench
from baselines.common.atari_wrappers import make_atari, wrap_deepmind
from baselines.common.cmd_util import atari_arg_parser
def train(env_id, num_timesteps, seed):
from baselines.trpo_mpi.nosharing_cnn_policy import CnnPolicy
from baselines.trpo_mpi import trpo_mpi
import baselines.common.tf_util as U
rank = MPI.COMM_WORLD.Get_rank()
sess = U.single_threaded_session()
sess.__enter__()
if rank == 0:
logger.configure()
else:
logger.configure(format_strs=[])
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
set_global_seeds(workerseed)
env = make_atari(env_id)
def policy_fn(name, ob_space, ac_space): #pylint: disable=W0613
return CnnPolicy(name=name, ob_space=env.observation_space, ac_space=env.action_space)
env = bench.Monitor(env, logger.get_dir() and osp.join(logger.get_dir(), str(rank)))
env.seed(workerseed)
env = wrap_deepmind(env)
env.seed(workerseed)
trpo_mpi.learn(env, policy_fn, timesteps_per_batch=512, max_kl=0.001, cg_iters=10, cg_damping=1e-3,
max_timesteps=int(num_timesteps * 1.1), gamma=0.98, lam=1.0, vf_iters=3, vf_stepsize=1e-4, entcoeff=0.00)
env.close()
def main():
args = atari_arg_parser().parse_args()
train(args.env, num_timesteps=args.num_timesteps, seed=args.seed)
if __name__ == "__main__":
main()

View File

@@ -1,36 +0,0 @@
#!/usr/bin/env python3
# noinspection PyUnresolvedReferences
from mpi4py import MPI
from baselines.common.cmd_util import make_mujoco_env, mujoco_arg_parser
from baselines import logger
from baselines.ppo1.mlp_policy import MlpPolicy
from baselines.trpo_mpi import trpo_mpi
def train(env_id, num_timesteps, seed):
import baselines.common.tf_util as U
sess = U.single_threaded_session()
sess.__enter__()
rank = MPI.COMM_WORLD.Get_rank()
if rank == 0:
logger.configure()
else:
logger.configure(format_strs=[])
logger.set_level(logger.DISABLED)
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
def policy_fn(name, ob_space, ac_space):
return MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
hid_size=32, num_hid_layers=2)
env = make_mujoco_env(env_id, workerseed)
trpo_mpi.learn(env, policy_fn, timesteps_per_batch=1024, max_kl=0.01, cg_iters=10, cg_damping=0.1,
max_timesteps=num_timesteps, gamma=0.99, lam=0.98, vf_iters=5, vf_stepsize=1e-3)
env.close()
def main():
args = mujoco_arg_parser().parse_args()
train(args.env, num_timesteps=args.num_timesteps, seed=args.seed)
if __name__ == '__main__':
main()

View File

@@ -6,8 +6,11 @@ import time
from baselines.common import colorize
from mpi4py import MPI
from collections import deque
from baselines.common import set_global_seeds
from baselines.common.mpi_adam import MpiAdam
from baselines.common.cg import cg
from baselines.common.input import observation_placeholder
from baselines.common.policies import build_policy
from contextlib import contextmanager
def traj_segment_generator(pi, env, horizon, stochastic):
@@ -33,7 +36,7 @@ def traj_segment_generator(pi, env, horizon, stochastic):
while True:
prevac = ac
ac, vpred = pi.act(stochastic, ob)
ac, vpred, _, _ = pi.step(ob, stochastic=stochastic)
# Slight weirdness here because we need value function at time T
# before returning segment [0, T-1] so we get the correct
# terminal value
@@ -41,7 +44,7 @@ def traj_segment_generator(pi, env, horizon, stochastic):
yield {"ob" : obs, "rew" : rews, "vpred" : vpreds, "new" : news,
"ac" : acs, "prevac" : prevacs, "nextvpred": vpred * (1 - new),
"ep_rets" : ep_rets, "ep_lens" : ep_lens}
_, vpred = pi.act(stochastic, ob)
_, vpred, _, _ = pi.step(ob, stochastic=stochastic)
# Be careful!!! if you change the downstream algorithm to aggregate
# several of these batches, then be sure to do a deepcopy
ep_rets = []
@@ -79,30 +82,95 @@ def add_vtarg_and_adv(seg, gamma, lam):
gaelam[t] = lastgaelam = delta + gamma * lam * nonterminal * lastgaelam
seg["tdlamret"] = seg["adv"] + seg["vpred"]
def learn(env, policy_fn, *,
timesteps_per_batch, # what to train on
max_kl, cg_iters,
gamma, lam, # advantage estimation
def learn(*,
network,
env,
total_timesteps,
timesteps_per_batch=1024, # what to train on
max_kl=0.001,
cg_iters=10,
gamma=0.99,
lam=1.0, # advantage estimation
seed=None,
entcoeff=0.0,
cg_damping=1e-2,
vf_stepsize=3e-4,
vf_iters =3,
max_timesteps=0, max_episodes=0, max_iters=0, # time constraint
callback=None
max_episodes=0, max_iters=0, # time constraint
callback=None,
**network_kwargs
):
'''
learn a policy function with TRPO algorithm
Parameters:
----------
network neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
or function that takes input placeholder and returns tuple (output, None) for feedforward nets
or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets
env environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class
timesteps_per_batch timesteps per gradient estimation batch
max_kl max KL divergence between old policy and new policy ( KL(pi_old || pi) )
entcoeff coefficient of policy entropy term in the optimization objective
cg_iters number of iterations of conjugate gradient algorithm
cg_damping conjugate gradient damping
vf_stepsize learning rate for adam optimizer used to optimie value function loss
vf_iters number of iterations of value function optimization iterations per each policy optimization step
total_timesteps max number of timesteps
max_episodes max number of episodes
max_iters maximum number of policy optimization iterations
callback function to be called with (locals(), globals()) each policy optimization step
Returns:
-------
learnt model
'''
nworkers = MPI.COMM_WORLD.Get_size()
rank = MPI.COMM_WORLD.Get_rank()
cpus_per_worker = 1
U.get_session(config=tf.ConfigProto(
allow_soft_placement=True,
inter_op_parallelism_threads=cpus_per_worker,
intra_op_parallelism_threads=cpus_per_worker
))
policy = build_policy(env, network, value_network='copy', **network_kwargs)
set_global_seeds(seed)
np.set_printoptions(precision=3)
# Setup losses and stuff
# ----------------------------------------
ob_space = env.observation_space
ac_space = env.action_space
pi = policy_fn("pi", ob_space, ac_space)
oldpi = policy_fn("oldpi", ob_space, ac_space)
ob = observation_placeholder(ob_space)
with tf.variable_scope("pi"):
pi = policy(observ_placeholder=ob)
with tf.variable_scope("oldpi"):
oldpi = policy(observ_placeholder=ob)
atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable)
ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return
ob = U.get_placeholder_cached(name="ob")
ac = pi.pdtype.sample_placeholder([None])
kloldnew = oldpi.pd.kl(pi.pd)
@@ -111,7 +179,7 @@ def learn(env, policy_fn, *,
meanent = tf.reduce_mean(ent)
entbonus = entcoeff * meanent
vferr = tf.reduce_mean(tf.square(pi.vpred - ret))
vferr = tf.reduce_mean(tf.square(pi.vf - ret))
ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold
surrgain = tf.reduce_mean(ratio * atarg)
@@ -122,9 +190,12 @@ def learn(env, policy_fn, *,
dist = meankl
all_var_list = pi.get_trainable_variables()
var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
all_var_list = get_trainable_variables("pi")
# var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
# vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
var_list = get_pi_trainable_variables("pi")
vf_var_list = get_vf_trainable_variables("pi")
vfadam = MpiAdam(vf_var_list)
get_flat = U.GetFlat(var_list)
@@ -142,7 +213,8 @@ def learn(env, policy_fn, *,
fvp = U.flatgrad(gvp, var_list)
assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv)
for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())])
for (oldv, newv) in zipsame(get_variables("oldpi"), get_variables("pi"))])
compute_losses = U.function([ob, ac, atarg], losses)
compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
@@ -183,11 +255,11 @@ def learn(env, policy_fn, *,
lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths
rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards
assert sum([max_iters>0, max_timesteps>0, max_episodes>0])==1
assert sum([max_iters>0, total_timesteps>0, max_episodes>0])==1
while True:
if callback: callback(locals(), globals())
if max_timesteps and timesteps_so_far >= max_timesteps:
if total_timesteps and timesteps_so_far >= total_timesteps:
break
elif max_episodes and episodes_so_far >= max_episodes:
break
@@ -287,5 +359,20 @@ def learn(env, policy_fn, *,
if rank==0:
logger.dump_tabular()
return pi
def flatten_lists(listoflists):
return [el for list_ in listoflists for el in list_]
return [el for list_ in listoflists for el in list_]
def get_variables(scope):
return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope)
def get_trainable_variables(scope):
return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
def get_vf_trainable_variables(scope):
return [v for v in get_trainable_variables(scope) if 'vf' in v.name[len(scope):].split('/')]
def get_pi_trainable_variables(scope):
return [v for v in get_trainable_variables(scope) if 'pi' in v.name[len(scope):].split('/')]

View File

@@ -14,7 +14,6 @@ setup(name='baselines',
'scipy',
'tqdm',
'joblib',
'zmq',
'dill',
'progressbar2',
'mpi4py',
@@ -23,6 +22,12 @@ setup(name='baselines',
'click',
'opencv-python'
],
extras_require={
'test': [
'filelock',
'pytest'
]
},
description='OpenAI baselines: high quality implementations of reinforcement learning algorithms',
author='OpenAI',
url='https://github.com/openai/baselines',