visualization code docs / bugfixes (#701)

* viz docs

* writing vizualization docs

* documenting plot_util

* docstrings in plot_util

* autopep8 and flake8

* spelling (using default vim spellchecker and ingoring things like dataframe, docstring and etc)

* rephrased viz.md a little bit
This commit is contained in:
pzhokhov
2018-11-05 14:31:15 -08:00
committed by GitHub
parent ab59de6922
commit c74ce02b9d
3 changed files with 510 additions and 10 deletions

View File

@@ -109,17 +109,9 @@ python -m baselines.run --alg=ppo2 --env=PongNoFrameskip-v4 --num_timesteps=0 --
*NOTE:* At the moment Mujoco training uses VecNormalize wrapper for the environment which is not being saved correctly; so loading the models trained on Mujoco will not work well if the environment is recreated. If necessary, you can work around that by replacing RunningMeanStd by TfRunningMeanStd in [baselines/common/vec_env/vec_normalize.py](baselines/common/vec_env/vec_normalize.py#L12). This way, mean and std of environment normalizing wrapper will be saved in tensorflow variables and included in the model file; however, training is slower that way - hence not including it by default
## Loading and vizualizing learning curves and other training metrics
See [here](docs/viz/viz.md) for instructions on how to load and display the training data.
## Using baselines with TensorBoard
Baselines logger can save data in the TensorBoard format. To do so, set environment variables `OPENAI_LOG_FORMAT` and `OPENAI_LOGDIR`:
```bash
export OPENAI_LOG_FORMAT='stdout,log,csv,tensorboard' # formats are comma-separated, but for tensorboard you only really need the last one
export OPENAI_LOGDIR=path/to/tensorboard/data
```
And you can now start TensorBoard with:
```bash
tensorboard --logdir=$OPENAI_LOGDIR
```
## Subpackages
- [A2C](baselines/a2c)

View File

@@ -0,0 +1,391 @@
import matplotlib.pyplot as plt
import os.path as osp
import json
import os
import numpy as np
import pandas
from collections import defaultdict, namedtuple
from baselines.bench import monitor
from baselines.logger import read_json, read_csv
def smooth(y, radius, mode='two_sided', valid_only=False):
'''
Smooth signal y, where radius is determines the size of the window
mode='twosided':
average over the window [max(index - radius, 0), min(index + radius, len(y)-1)]
mode='causal':
average over the window [max(index - radius, 0), index]
valid_only: put nan in entries where the full-sized window is not available
'''
assert mode in ('two_sided', 'causal')
if len(y) < 2*radius+1:
return np.ones_like(y) * y.mean()
elif mode == 'two_sided':
convkernel = np.ones(2 * radius+1)
out = np.convolve(y, convkernel,mode='same') / np.convolve(np.ones_like(y), convkernel, mode='same')
if valid_only:
out[:radius] = out[-radius:] = np.nan
elif mode == 'causal':
convkernel = np.ones(radius)
out = np.convolve(y, convkernel,mode='full') / np.convolve(np.ones_like(y), convkernel, mode='full')
out = out[:-radius+1]
if valid_only:
out[:radius] = np.nan
return out
def one_sided_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_counts_threshold=1e-8):
'''
perform one-sided (causal) EMA (exponential moving average)
smoothing and resampling to an even grid with n points.
Does not do extrapolation, so we assume
xolds[0] <= low && high <= xolds[-1]
Arguments:
xolds: array or list - x values of data. Needs to be sorted in ascending order
yolds: array of list - y values of data. Has to have the same length as xolds
low: float - min value of the new x grid. By default equals to xolds[0]
high: float - max value of the new x grid. By default equals to xolds[-1]
n: int - number of points in new x grid
decay_steps: float - EMA decay factor, expressed in new x grid steps.
low_counts_threshold: float or int
- y values with counts less than this value will be set to NaN
Returns:
tuple sum_ys, count_ys where
xs - array with new x grid
ys - array of EMA of y at each point of the new x grid
count_ys - array of EMA of y counts at each point of the new x grid
'''
low = xolds[0] if low is None else low
high = xolds[-1] if high is None else high
assert xolds[0] <= low, 'low = {} < xolds[0] = {} - extrapolation not permitted!'.format(low, xolds[0])
assert xolds[-1] >= high, 'high = {} > xolds[-1] = {} - extrapolation not permitted!'.format(high, xolds[-1])
assert len(xolds) == len(yolds), 'length of xolds ({}) and yolds ({}) do not match!'.format(len(xolds), len(yolds))
xolds = xolds.astype('float64')
yolds = yolds.astype('float64')
luoi = 0 # last unused old index
sum_y = 0.
count_y = 0.
xnews = np.linspace(low, high, n)
decay_period = (high - low) / (n - 1) * decay_steps
interstep_decay = np.exp(- 1. / decay_steps)
sum_ys = np.zeros_like(xnews)
count_ys = np.zeros_like(xnews)
for i in range(n):
xnew = xnews[i]
sum_y *= interstep_decay
count_y *= interstep_decay
while True:
xold = xolds[luoi]
if xold <= xnew:
decay = np.exp(- (xnew - xold) / decay_period)
sum_y += decay * yolds[luoi]
count_y += decay
luoi += 1
else:
break
if luoi >= len(xolds):
break
sum_ys[i] = sum_y
count_ys[i] = count_y
ys = sum_ys / count_ys
ys[count_ys < low_counts_threshold] = np.nan
return xnews, ys, count_ys
def symmetric_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_counts_threshold=1e-8):
'''
perform symmetric EMA (exponential moving average)
smoothing and resampling to an even grid with n points.
Does not do extrapolation, so we assume
xolds[0] <= low && high <= xolds[-1]
Arguments:
xolds: array or list - x values of data. Needs to be sorted in ascending order
yolds: array of list - y values of data. Has to have the same length as xolds
low: float - min value of the new x grid. By default equals to xolds[0]
high: float - max value of the new x grid. By default equals to xolds[-1]
n: int - number of points in new x grid
decay_steps: float - EMA decay factor, expressed in new x grid steps.
low_counts_threshold: float or int
- y values with counts less than this value will be set to NaN
Returns:
tuple sum_ys, count_ys where
xs - array with new x grid
ys - array of EMA of y at each point of the new x grid
count_ys - array of EMA of y counts at each point of the new x grid
'''
xs, ys1, count_ys1 = one_sided_ema(xolds, yolds, low, high, n, decay_steps, low_counts_threshold=0)
_, ys2, count_ys2 = one_sided_ema(-xolds[::-1], yolds[::-1], -high, -low, n, decay_steps, low_counts_threshold=0)
ys2 = ys2[::-1]
count_ys2 = count_ys2[::-1]
count_ys = count_ys1 + count_ys2
ys = (ys1 * count_ys1 + ys2 * count_ys2) / count_ys
ys[count_ys < low_counts_threshold] = np.nan
return xs, ys, count_ys
Result = namedtuple('Result', 'monitor progress dirname metadata')
Result.__new__.__defaults__ = (None,) * len(Result._fields)
def load_results(root_dir_or_dirs, enable_progress=True, enable_monitor=True, verbose=False):
'''
load summaries of runs from a list of directories (including subdirectories)
Arguments:
enable_progress: bool - if True, will attempt to load data from progress.csv files (data saved by logger). Default: True
enable_monitor: bool - if True, will attempt to load data from monitor.csv files (data saved by Monitor environment wrapper). Default: True
verbose: bool - if True, will print out list of directories from which the data is loaded. Default: False
Returns:
List of Result objects with the following fields:
- dirname - path to the directory data was loaded from
- metadata - run metadata (such as command-line arguments and anything else in metadata.json file
- monitor - if enable_monitor is True, this field contains pandas dataframe with loaded monitor.csv file (or aggregate of all *.monitor.csv files in the directory)
- progress - if enable_progress is True, this field contains pandas dataframe with loaded progress.csv file
'''
if isinstance(root_dir_or_dirs, str):
rootdirs = [osp.expanduser(root_dir_or_dirs)]
else:
rootdirs = [osp.expanduser(d) for d in root_dir_or_dirs]
allresults = []
for rootdir in rootdirs:
assert osp.exists(rootdir), "%s doesn't exist"%rootdir
for dirname, dirs, files in os.walk(rootdir):
if '-proc' in dirname:
files[:] = []
continue
if set(['metadata.json', 'monitor.json', 'monitor.csv', 'progress.json', 'progress.csv']).intersection(files):
# used to be uncommented, which means do not go deeper than current directory if any of the data files
# are found
# dirs[:] = []
result = {'dirname' : dirname}
if "metadata.json" in files:
with open(osp.join(dirname, "metadata.json"), "r") as fh:
result['metadata'] = json.load(fh)
progjson = osp.join(dirname, "progress.json")
progcsv = osp.join(dirname, "progress.csv")
if enable_progress:
if osp.exists(progjson):
result['progress'] = pandas.DataFrame(read_json(progjson))
elif osp.exists(progcsv):
try:
result['progress'] = read_csv(progcsv)
except pandas.errors.EmptyDataError:
print('skipping progress file in ', dirname, 'empty data')
else:
if verbose: print('skipping %s: no progress file'%dirname)
if enable_monitor:
try:
result['monitor'] = pandas.DataFrame(monitor.load_results(dirname))
except monitor.LoadMonitorResultsError:
print('skipping %s: no monitor files'%dirname)
except Exception as e:
print('exception loading monitor file in %s: %s'%(dirname, e))
if result.get('monitor') is not None or result.get('progress') is not None:
allresults.append(Result(**result))
if verbose:
print('successfully loaded %s'%dirname)
if verbose: print('loaded %i results'%len(allresults))
return allresults
COLORS = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'purple', 'pink',
'brown', 'orange', 'teal', 'lightblue', 'lime', 'lavender', 'turquoise',
'darkgreen', 'tan', 'salmon', 'gold', 'darkred', 'darkblue']
def default_xy_fn(r):
x = np.cumsum(r.monitor.l)
y = smooth(r.monitor.r, radius=10)
return x,y
def default_split_fn(r):
import re
# match name between slash and -<digits> at the end of the string
# (slash in the beginning or -<digits> in the end or either may be missing)
match = re.search(r'[^/-]+(?=(-\d+)?\Z)', r.dirname)
if match:
return match.group(0)
def plot_results(
allresults, *,
xy_fn=default_xy_fn,
split_fn=default_split_fn,
group_fn=default_split_fn,
average_group=False,
figsize=None,
legend_outside=False,
resample=0,
smooth_step=1.0,
):
'''
Plot multiple Results objects
xy_fn: function Result -> x,y - function that converts results objects into tuple of x and y values.
By default, x is cumsum of episode lengths, and y is episode rewards
split_fn: function Result -> hashable - function that converts results objects into keys to split curves into sub-panels by.
That is, the results r for which split_fn(r) is different will be put on different sub-panels.
By default, the portion of r.dirname between last / and -<digits> is returned. The sub-panels are
stacked vertically in the figure.
group_fn: function Result -> hashable - function that converts results objects into keys to group curves by.
That is, the results r for which group_fn(r) is the same will be put into the same group.
Curves in the same group have the same color (if average_group is False), or averaged over
(if average_group is True). The default value is the same as default value for split_fn
average_group: bool - if True, will average the curves in the same group. The mean of the result is plotted, with lighter
shaded region around corresponding to the standard deviation, and darker shaded region corresponding to
the error of mean estimate (that is, standard deviation over square root of number of samples)
figsize: tuple or None - size of the resulting figure (including sub-panels). By default, width is 6 and height is 6 times number of
sub-panels.
legend_outside: bool - if True, will place the legend outside of the sub-panels.
resample: int - if not zero, size of the uniform grid in x direction to resample onto. Resampling is performed via symmetric
EMA smoothing (see the docstring for symmetric_ema).
Default is zero (no resampling). Note that if average_group is True, resampling is necessary; in that case, default
value is 512.
smooth_step: float - when resampling (i.e. when resample > 0 or average_group is True), use this EMA decay parameter (in units of the new grid step).
See docstrings for decay_steps in symmetric_ema or one_sided_ema functions.
'''
if split_fn is None: split_fn = lambda _ : ''
if group_fn is None: group_fn = lambda _ : ''
sk2r = defaultdict(list) # splitkey2results
for result in allresults:
splitkey = split_fn(result)
sk2r[splitkey].append(result)
assert len(sk2r) > 0
assert isinstance(resample, int), "0: don't resample. <integer>: that many samples"
nrows = len(sk2r)
ncols = 1
figsize = figsize or (6, 6 * nrows)
f, axarr = plt.subplots(nrows, ncols, sharex=False, squeeze=False, figsize=figsize)
groups = list(set(group_fn(result) for result in allresults))
default_samples = 512
if average_group:
resample = resample or default_samples
for (isplit, sk) in enumerate(sorted(sk2r.keys())):
g2l = {}
g2c = defaultdict(int)
sresults = sk2r[sk]
gresults = defaultdict(list)
ax = axarr[isplit][0]
for result in sresults:
group = group_fn(result)
g2c[group] += 1
x, y = xy_fn(result)
if x is None: x = np.arange(len(y))
x, y = map(np.asarray, (x, y))
if average_group:
gresults[group].append((x,y))
else:
if resample:
x, y, counts = symmetric_ema(x, y, x[0], x[-1], resample, decay_steps=smooth_step)
l, = ax.plot(x, y, color=COLORS[groups.index(group) % len(COLORS)])
g2l[group] = l
if average_group:
for group in sorted(groups):
xys = gresults[group]
if not any(xys):
continue
color = COLORS[groups.index(group)]
origxs = [xy[0] for xy in xys]
minxlen = min(map(len, origxs))
def allequal(qs):
return all((q==qs[0]).all() for q in qs[1:])
if resample:
low = max(x[0] for x in origxs)
high = min(x[-1] for x in origxs)
usex = np.linspace(low, high, resample)
ys = []
for (x, y) in xys:
ys.append(symmetric_ema(x, y, low, high, resample, decay_steps=smooth_step)[1])
else:
assert allequal([x[:minxlen] for x in origxs]),\
'If you want to average unevenly sampled data, set resample=<number of samples you want>'
usex = origxs[0]
ys = [xy[1][:minxlen] for xy in xys]
ymean = np.mean(ys, axis=0)
ystd = np.std(ys, axis=0)
ystderr = ystd / np.sqrt(len(ys))
l, = axarr[isplit][0].plot(usex, ymean, color=color)
g2l[group] = l
ax.fill_between(usex, ymean - ystderr, ymean + ystderr, color=color, alpha=.4)
ax.fill_between(usex, ymean - ystd, ymean + ystd, color=color, alpha=.2)
# https://matplotlib.org/users/legend_guide.html
plt.tight_layout()
if any(g2l.keys()):
ax.legend(
g2l.values(),
['%s (%i)'%(g, g2c[g]) for g in g2l] if average_group else g2l.keys(),
loc=2 if legend_outside else None,
bbox_to_anchor=(1,1) if legend_outside else None)
ax.set_title(sk)
return f, axarr
def regression_analysis(df):
xcols = list(df.columns.copy())
xcols.remove('score')
ycols = ['score']
import statsmodels.api as sm
mod = sm.OLS(df[ycols], sm.add_constant(df[xcols]), hasconst=False)
res = mod.fit()
print(res.summary())
def test_smooth():
norig = 100
nup = 300
ndown = 30
xs = np.cumsum(np.random.rand(norig) * 10 / norig)
yclean = np.sin(xs)
ys = yclean + .1 * np.random.randn(yclean.size)
xup, yup, _ = symmetric_ema(xs, ys, xs.min(), xs.max(), nup, decay_steps=nup/ndown)
xdown, ydown, _ = symmetric_ema(xs, ys, xs.min(), xs.max(), ndown, decay_steps=ndown/ndown)
xsame, ysame, _ = symmetric_ema(xs, ys, xs.min(), xs.max(), norig, decay_steps=norig/ndown)
plt.plot(xs, ys, label='orig', marker='x')
plt.plot(xup, yup, label='up', marker='x')
plt.plot(xdown, ydown, label='down', marker='x')
plt.plot(xsame, ysame, label='same', marker='x')
plt.plot(xs, yclean, label='clean', marker='x')
plt.legend()
plt.show()

117
docs/viz/viz.md Normal file
View File

@@ -0,0 +1,117 @@
# Loading and visualizing results
In order to compare performance of algorithms, we often would like to visualize learning curves (reward as a function of time steps), or some other auxiliary information about learning
aggregated into a plot. Baselines repo provides tools for doing so in several different ways, depending on the goal.
## Preliminaries
For all algorithms in baselines summary data is saved into a folder defined by logger. By default, a folder `$TMPDIR/openai-<date>-<time>` is used;
you can see the location of logger directory at the beginning of the training in the message like this:
```
Logging to /var/folders/mq/tgrn7bs17s1fnhlwt314b2fm0000gn/T/openai-2018-10-29-15-03-13-537078
```
The location can be changed by changing `OPENAI_LOGDIR` environment variable; for instance:
```bash
export OPENAI_LOGDIR=$HOME/logs/cartpole-ppo
python -m baselines.run --alg=ppo2 --env=CartPole-v0 --num_time steps=30000 --nsteps=128
```
will log data to `~/logs/cartpole-ppo`.
## Using TensorBoard
One of the most straightforward ways to visualize data is to use [TensorBoard](https://www.tensorflow.org/guide/summaries_and_tensorboard). Baselines logger can dump data in tensorboard-compatible format; to
set that up, set environment variables `OPENAI_LOG_FORMAT`
```bash
export OPENAI_LOG_FORMAT='stdout,log,csv,tensorboard' # formats are comma-separated, but for tensorboard you only really need the last one
```
And you can now start TensorBoard with:
```bash
tensorboard --logdir=$OPENAI_LOGDIR
```
## Loading summaries of the results
If the summary overview provided by tensorboard is not sufficient, and you would like to either access to raw environment episode data, or use complex post-processing notavailable in tensorboard, you can load results into python as [pandas](https://pandas.pydata.org/) dataframes.
The colab notebook with the full version of the code is available [here](https://colab.research.google.com/drive/1Wez1SA9PmNkCoYc8Fvl53bhU3F8OffGm) (use "Open in playground" button to get a runnable version)
For instance, the following snippet:
```python
from baselines.common import plot_util as pu
results = pu.load_results('~/logs/cartpole-ppo')
```
will search for all folders with baselines-compatible results in `~/logs/cartpole-ppo` and subfolders and
return a list of Result objects. Each Result object is a named tuple with the following fields:
- dirname: str - name of the folder from which data was loaded
- metadata: dict) - dictionary with various metadata (read from metadata.json file)
- progress: pandas.DataFrame - tabular data saved by logger as a pandas dataframe. Available if csv is in logger formats.
- monitor: pandas.DataFrame - raw episode data (length, episode reward, timestamp). Available if environment wrapped with [Monitor](../../baselines/bench/monitor.py) wrapper
## Plotting: single- and few curve plots
Once results are loaded, they can be plotted in all conventional means. For example:
```python
import matplotlib.pyplot as plt
import numpy as np
r = results[0]
plt.plot(np.cumsum(r.monitor.l), r.monitor.r)
```
will print a (very noisy learning curve) for CartPole (assuming we ran the training command for CartPole above). Note the cumulative sum trick to get convert length of the episode into number of time steps taken so far.
<img src="https://storage.googleapis.com/baselines/assets/viz/Screen%20Shot%202018-10-29%20at%204.44.46%20PM.png" width="500">
We can get a smoothened version of the same curve by using `plot_util.smooth()` function:
```python
plt.plot(np.cumsum(r.monitor.l), pu.smooth(r.monitor.r, radius=10))
```
<img src="https://storage.googleapis.com/baselines/assets/viz/Screen%20Shot%202018-10-29%20at%204.49.13%20PM.png" width="730">
We can also get a similar curve by using logger summaries (instead of raw episode data in monitor.csv):
```python
plt.plot(r.progress.total_time steps, r.progress.eprewmean)
```
<img src="https://storage.googleapis.com/baselines/assets/viz/Screen%20Shot%202018-10-29%20at%205.04.31%20PM.png" width="730">
Note, however, that raw episode data is stored by the Monitor wrapper, and hence looks similar for all algorithms, whereas progress data
is handled by the algorithm itself, and hence can vary (column names, type of data available) between algorithms.
## Plotting: many curves
While the loading and the plotting functions described above in principle give you access to any slice of the training summaries,
sometimes it is necessary to plot and compare many training runs (multiple algorithms, multiple seeds for random number generator),
and usage of the functions above can get tedious and messy. For that case, `baselines.common.plot_util` provides convenience function
`plot_results` that handles multiple Result objects that need to be routed in multiple plots. Consider the following bash snippet that
runs ppo2 with cartpole with 6 different seeds for 30k time steps, first with batch size 32, and then with batch size 128:
```bash
for seed in $(seq 0 5); do
OPENAI_LOGDIR=$HOME/logs/cartpole-ppo/b32-$seed python -m baselines.run --alg=ppo2 --env=CartPole-v0 --num_time steps=3e4 --seed=$seed --nsteps=32
done
for seed in $(seq 0 5); do
OPENAI_LOGDIR=$HOME/logs/cartpole-ppo/b128-$seed python -m baselines.run --alg=ppo2 --env=CartPole-v0 --num_time steps=3e4 --seed=$seed --nsteps=128
done
```
These 12 runs can be loaded just as before:
```python
results = pu.load_results('~/logs/cartpole-ppo')
```
But how do we plot all 12 of them in a sensible manner? `baselines.common.plot_util` module provides `plot_results` function to do just that:
```
results = results[1:]
pu.plot_results(results)
```
(note that now the length of the results list is 13, due to the data from the previous run stored directly in `~/logs/cartpole-ppo`; we discard first element for the same reason)
The results are split into two groups based on batch size and are plotted on a separate graph. More specifically, by default `plot_results` considers digits after dash at the end of the directory name to be seed id and groups the runs that differ only by those together.
<img src="https://storage.googleapis.com/baselines/assets/viz/Screen%20Shot%202018-10-29%20at%205.53.45%20PM.png" width="700">
Showing all seeds on the same plot may be somewhat hard to comprehend and analyse. We can instead average over all seeds via the following command:
<img src="https://storage.googleapis.com/baselines/assets/viz/Screen%20Shot%202018-11-02%20at%204.42.52%20PM.png" width="720">
The lighter shade shows the standard deviation of data, and darker shade -
error in estimate of the mean (that is, standard deviation divided by square root of number of seeds)
Note that averaging over seeds requires resampling to a common grid, which, in turn, requires smoothing
(using language of signal processing, we need to do low-pass filtering before resampling to avoid aliasing effects).
You can change the amount of smoothing by adjusting `resample` and `smooth_step` arguments to achieve desired smoothing effect
See the docstring of `plot_util` function for more info.