make baselines run without mpi wip
This commit is contained in:
13
Dockerfile
13
Dockerfile
@@ -1,16 +1,7 @@
|
||||
FROM ubuntu:16.04
|
||||
FROM python:3.6
|
||||
|
||||
RUN apt-get -y update && apt-get -y install git wget python-dev python3-dev libopenmpi-dev python-pip zlib1g-dev cmake python-opencv
|
||||
# RUN apt-get -y update && apt-get -y install git wget python-dev python3-dev libopenmpi-dev python-pip zlib1g-dev cmake python-opencv
|
||||
ENV CODE_DIR /root/code
|
||||
ENV VENV /root/venv
|
||||
|
||||
RUN \
|
||||
pip install virtualenv && \
|
||||
virtualenv $VENV --python=python3 && \
|
||||
. $VENV/bin/activate && \
|
||||
pip install --upgrade pip
|
||||
|
||||
ENV PATH=$VENV/bin:$PATH
|
||||
|
||||
COPY . $CODE_DIR/baselines
|
||||
WORKDIR $CODE_DIR/baselines
|
||||
|
@@ -1,4 +1,8 @@
|
||||
from mpi4py import MPI
|
||||
try:
|
||||
from mpi4py import MPI
|
||||
except ImportError:
|
||||
MPI = None
|
||||
|
||||
import tensorflow as tf, baselines.common.tf_util as U, numpy as np
|
||||
|
||||
class RunningMeanStd(object):
|
||||
@@ -39,7 +43,8 @@ class RunningMeanStd(object):
|
||||
n = int(np.prod(self.shape))
|
||||
totalvec = np.zeros(n*2+1, 'float64')
|
||||
addvec = np.concatenate([x.sum(axis=0).ravel(), np.square(x).sum(axis=0).ravel(), np.array([len(x)],dtype='float64')])
|
||||
MPI.COMM_WORLD.Allreduce(addvec, totalvec, op=MPI.SUM)
|
||||
if MPI is not None:
|
||||
MPI.COMM_WORLD.Allreduce(addvec, totalvec, op=MPI.SUM)
|
||||
self.incfiltparams(totalvec[0:n].reshape(self.shape), totalvec[n:2*n].reshape(self.shape), totalvec[2*n])
|
||||
|
||||
@U.in_session
|
||||
|
@@ -9,7 +9,6 @@ from baselines import logger
|
||||
from baselines.common.mpi_adam import MpiAdam
|
||||
import baselines.common.tf_util as U
|
||||
from baselines.common.mpi_running_mean_std import RunningMeanStd
|
||||
from mpi4py import MPI
|
||||
|
||||
def normalize(x, stats):
|
||||
if stats is None:
|
||||
@@ -358,6 +357,11 @@ class DDPG(object):
|
||||
return stats
|
||||
|
||||
def adapt_param_noise(self):
|
||||
try:
|
||||
from mpi4py import MPI
|
||||
except ImportError:
|
||||
MPI = None
|
||||
|
||||
if self.param_noise is None:
|
||||
return 0.
|
||||
|
||||
@@ -371,7 +375,11 @@ class DDPG(object):
|
||||
self.param_noise_stddev: self.param_noise.current_stddev,
|
||||
})
|
||||
|
||||
mean_distance = MPI.COMM_WORLD.allreduce(distance, op=MPI.SUM) / MPI.COMM_WORLD.Get_size()
|
||||
if MPI is not None:
|
||||
mean_distance = MPI.COMM_WORLD.allreduce(distance, op=MPI.SUM) / MPI.COMM_WORLD.Get_size()
|
||||
else:
|
||||
mean_distance = distance
|
||||
|
||||
self.param_noise.adapt(mean_distance)
|
||||
return mean_distance
|
||||
|
||||
|
@@ -12,7 +12,11 @@ from baselines.common.runners import AbstractEnvRunner
|
||||
from baselines.common.tf_util import get_session, save_variables, load_variables
|
||||
from baselines.common.mpi_adam_optimizer import MpiAdamOptimizer
|
||||
|
||||
from mpi4py import MPI
|
||||
try:
|
||||
from mpi4py import MPI
|
||||
except ImportError:
|
||||
MPI = None
|
||||
|
||||
from baselines.common.tf_util import initialize
|
||||
from baselines.common.mpi_util import sync_from_root
|
||||
|
||||
@@ -93,7 +97,10 @@ class Model(object):
|
||||
# 1. Get the model parameters
|
||||
params = tf.trainable_variables('ppo2_model')
|
||||
# 2. Build our trainer
|
||||
trainer = MpiAdamOptimizer(MPI.COMM_WORLD, learning_rate=LR, epsilon=1e-5)
|
||||
if MPI is not None:
|
||||
trainer = MpiAdamOptimizer(MPI.COMM_WORLD, learning_rate=LR, epsilon=1e-5)
|
||||
else:
|
||||
trainer = tf.train.AdamOptimizer(learning_rate=LR, epsilon=1e-5)
|
||||
# 3. Calculate the gradients
|
||||
grads_and_var = trainer.compute_gradients(loss, params)
|
||||
grads, var = zip(*grads_and_var)
|
||||
@@ -136,7 +143,7 @@ class Model(object):
|
||||
self.save = functools.partial(save_variables, sess=sess)
|
||||
self.load = functools.partial(load_variables, sess=sess)
|
||||
|
||||
if MPI.COMM_WORLD.Get_rank() == 0:
|
||||
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
|
||||
initialize()
|
||||
global_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="")
|
||||
sync_from_root(sess, global_variables) #pylint: disable=E1101
|
||||
@@ -392,9 +399,9 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
|
||||
logger.logkv('time_elapsed', tnow - tfirststart)
|
||||
for (lossval, lossname) in zip(lossvals, model.loss_names):
|
||||
logger.logkv(lossname, lossval)
|
||||
if MPI.COMM_WORLD.Get_rank() == 0:
|
||||
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
|
||||
logger.dumpkvs()
|
||||
if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir() and MPI.COMM_WORLD.Get_rank() == 0:
|
||||
if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir() and (MPI is None or MPI.COMM_WORLD.Get_rank() == 0):
|
||||
checkdir = osp.join(logger.get_dir(), 'checkpoints')
|
||||
os.makedirs(checkdir, exist_ok=True)
|
||||
savepath = osp.join(checkdir, '%.5i'%update)
|
||||
|
@@ -4,7 +4,6 @@ import baselines.common.tf_util as U
|
||||
import tensorflow as tf, numpy as np
|
||||
import time
|
||||
from baselines.common import colorize
|
||||
from mpi4py import MPI
|
||||
from collections import deque
|
||||
from baselines.common import set_global_seeds
|
||||
from baselines.common.mpi_adam import MpiAdam
|
||||
@@ -13,6 +12,11 @@ from baselines.common.input import observation_placeholder
|
||||
from baselines.common.policies import build_policy
|
||||
from contextlib import contextmanager
|
||||
|
||||
try:
|
||||
from mpi4py import MPI
|
||||
except ImportError:
|
||||
MPI = None
|
||||
|
||||
def traj_segment_generator(pi, env, horizon, stochastic):
|
||||
# Initialize state variables
|
||||
t = 0
|
||||
@@ -146,9 +150,12 @@ def learn(*,
|
||||
|
||||
'''
|
||||
|
||||
|
||||
nworkers = MPI.COMM_WORLD.Get_size()
|
||||
rank = MPI.COMM_WORLD.Get_rank()
|
||||
if MPI is not None:
|
||||
nworkers = MPI.COMM_WORLD.Get_size()
|
||||
rank = MPI.COMM_WORLD.Get_rank()
|
||||
else:
|
||||
nworkers = 1
|
||||
rank = 0
|
||||
|
||||
cpus_per_worker = 1
|
||||
U.get_session(config=tf.ConfigProto(
|
||||
@@ -238,8 +245,9 @@ def learn(*,
|
||||
def allmean(x):
|
||||
assert isinstance(x, np.ndarray)
|
||||
out = np.empty_like(x)
|
||||
MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
|
||||
out /= nworkers
|
||||
if MPI is not None:
|
||||
MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
|
||||
out /= nworkers
|
||||
return out
|
||||
|
||||
U.initialize()
|
||||
@@ -247,7 +255,9 @@ def learn(*,
|
||||
pi.load(load_path)
|
||||
|
||||
th_init = get_flat()
|
||||
MPI.COMM_WORLD.Bcast(th_init, root=0)
|
||||
if MPI is not None:
|
||||
MPI.COMM_WORLD.Bcast(th_init, root=0)
|
||||
|
||||
set_from_flat(th_init)
|
||||
vfadam.sync()
|
||||
print("Init param sum", th_init.sum(), flush=True)
|
||||
@@ -353,7 +363,11 @@ def learn(*,
|
||||
logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))
|
||||
|
||||
lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values
|
||||
listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
|
||||
if MPI is not None:
|
||||
listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
|
||||
else
|
||||
listoflrpairs = [lrlocal]
|
||||
|
||||
lens, rews = map(flatten_lists, zip(*listoflrpairs))
|
||||
lenbuffer.extend(lens)
|
||||
rewbuffer.extend(rews)
|
||||
|
Reference in New Issue
Block a user