Merge branch 'peterz_profile_vec_normalize' into peterz_migrate_rlalgs
This commit is contained in:
@@ -16,21 +16,22 @@ class RunningMeanStd(object):
|
||||
self.update_from_moments(batch_mean, batch_var, batch_count)
|
||||
|
||||
def update_from_moments(self, batch_mean, batch_var, batch_count):
|
||||
delta = batch_mean - self.mean
|
||||
tot_count = self.count + batch_count
|
||||
self.mean, self.var, self.count = update_mean_var_count_from_moments(
|
||||
self.mean, self.var, self.count, batch_mean, batch_var, batch_count)
|
||||
|
||||
new_mean = self.mean + delta * batch_count / tot_count
|
||||
m_a = self.var * (self.count)
|
||||
m_b = batch_var * (batch_count)
|
||||
M2 = m_a + m_b + np.square(delta) * self.count * batch_count / (self.count + batch_count)
|
||||
new_var = M2 / (self.count + batch_count)
|
||||
|
||||
new_count = batch_count + self.count
|
||||
|
||||
self.mean = new_mean
|
||||
self.var = new_var
|
||||
self.count = new_count
|
||||
def update_mean_var_count_from_moments(mean, var, count, batch_mean, batch_var, batch_count):
|
||||
delta = batch_mean - mean
|
||||
tot_count = count + batch_count
|
||||
|
||||
new_mean = mean + delta * batch_count / tot_count
|
||||
m_a = var * count
|
||||
m_b = batch_var * batch_count
|
||||
M2 = m_a + m_b + np.square(delta) * count * batch_count / (count + batch_count)
|
||||
new_var = M2 / (count + batch_count)
|
||||
new_count = batch_count + count
|
||||
|
||||
return new_mean, new_var, new_count
|
||||
|
||||
|
||||
class TfRunningMeanStd(object):
|
||||
# https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm
|
||||
@@ -41,76 +42,45 @@ class TfRunningMeanStd(object):
|
||||
def __init__(self, epsilon=1e-4, shape=(), scope=''):
|
||||
sess = get_session()
|
||||
|
||||
_batch_mean = tf.placeholder(shape=shape, dtype=tf.float64)
|
||||
_batch_var = tf.placeholder(shape=shape, dtype=tf.float64)
|
||||
_batch_count = tf.placeholder(shape=(), dtype=tf.float64)
|
||||
self._new_mean = tf.placeholder(shape=shape, dtype=tf.float64)
|
||||
self._new_var = tf.placeholder(shape=shape, dtype=tf.float64)
|
||||
self._new_count = tf.placeholder(shape=(), dtype=tf.float64)
|
||||
|
||||
|
||||
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
|
||||
_mean = tf.get_variable('mean', initializer=np.zeros(shape, 'float64'), dtype=tf.float64)
|
||||
_var = tf.get_variable('std', initializer=np.ones(shape, 'float64'), dtype=tf.float64)
|
||||
_count = tf.get_variable('count', initializer=np.full((), epsilon, 'float64'), dtype=tf.float64)
|
||||
self._mean = tf.get_variable('mean', initializer=np.zeros(shape, 'float64'), dtype=tf.float64)
|
||||
self._var = tf.get_variable('std', initializer=np.ones(shape, 'float64'), dtype=tf.float64)
|
||||
self._count = tf.get_variable('count', initializer=np.full((), epsilon, 'float64'), dtype=tf.float64)
|
||||
|
||||
delta = _batch_mean - _mean
|
||||
tot_count = _count + _batch_count
|
||||
self.update_ops = tf.group([
|
||||
self._var.assign(self._new_var),
|
||||
self._mean.assign(self._new_mean),
|
||||
self._count.assign(self._new_count)
|
||||
])
|
||||
|
||||
new_mean = _mean + delta * _batch_count / tot_count
|
||||
m_a = _var * (_count)
|
||||
m_b = _batch_var * (_batch_count)
|
||||
M2 = m_a + m_b + np.square(delta) * _count * _batch_count / (_count + _batch_count)
|
||||
new_var = M2 / (_count + _batch_count)
|
||||
new_count = _batch_count + _count
|
||||
|
||||
update_ops = [
|
||||
_var.assign(new_var),
|
||||
_mean.assign(new_mean),
|
||||
_count.assign(new_count)
|
||||
]
|
||||
|
||||
self._mean = _mean
|
||||
self._var = _var
|
||||
self._count = _count
|
||||
|
||||
self._batch_mean = _batch_mean
|
||||
self._batch_var = _batch_var
|
||||
self._batch_count = _batch_count
|
||||
|
||||
|
||||
def update_from_moments(batch_mean, batch_var, batch_count):
|
||||
for op in update_ops:
|
||||
sess.run(op, feed_dict={
|
||||
_batch_mean: batch_mean,
|
||||
_batch_var: batch_var,
|
||||
_batch_count: batch_count
|
||||
})
|
||||
|
||||
|
||||
|
||||
sess.run(tf.variables_initializer([_mean, _var, _count]))
|
||||
sess.run(tf.variables_initializer([self._mean, self._var, self._count]))
|
||||
self.sess = sess
|
||||
self.update_from_moments = update_from_moments
|
||||
|
||||
@property
|
||||
def mean(self):
|
||||
return self.sess.run(self._mean)
|
||||
|
||||
@property
|
||||
def var(self):
|
||||
return self.sess.run(self._var)
|
||||
|
||||
@property
|
||||
def count(self):
|
||||
return self.sess.run(self._count)
|
||||
|
||||
self._set_mean_var_count()
|
||||
|
||||
def _set_mean_var_count(self):
|
||||
self.mean, self.var, self.count = self.sess.run([self._mean, self._var, self._count])
|
||||
|
||||
def update(self, x):
|
||||
batch_mean = np.mean(x, axis=0)
|
||||
batch_var = np.var(x, axis=0)
|
||||
batch_count = x.shape[0]
|
||||
self.update_from_moments(batch_mean, batch_var, batch_count)
|
||||
|
||||
|
||||
|
||||
new_mean, new_var, new_count = update_mean_var_count_from_moments(self.mean, self.var, self.count, batch_mean, batch_var, batch_count)
|
||||
|
||||
self.sess.run(self.update_ops, feed_dict={
|
||||
self._new_mean: new_mean,
|
||||
self._new_var: new_var,
|
||||
self._new_count: new_count
|
||||
})
|
||||
|
||||
self._set_mean_var_count()
|
||||
|
||||
|
||||
|
||||
def test_runningmeanstd():
|
||||
for (x1, x2, x3) in [
|
||||
@@ -145,3 +115,71 @@ def test_tf_runningmeanstd():
|
||||
ms2 = [rms.mean, rms.var]
|
||||
|
||||
np.testing.assert_allclose(ms1, ms2)
|
||||
|
||||
|
||||
def profile_tf_runningmeanstd():
|
||||
import time
|
||||
from baselines.common import tf_util
|
||||
|
||||
tf_util.get_session( config=tf.ConfigProto(
|
||||
inter_op_parallelism_threads=1,
|
||||
intra_op_parallelism_threads=1,
|
||||
allow_soft_placement=True
|
||||
))
|
||||
|
||||
x = np.random.random((376,))
|
||||
|
||||
n_trials = 10000
|
||||
rms = RunningMeanStd()
|
||||
tfrms = TfRunningMeanStd()
|
||||
|
||||
tic1 = time.time()
|
||||
for _ in range(n_trials):
|
||||
rms.update(x)
|
||||
|
||||
tic2 = time.time()
|
||||
for _ in range(n_trials):
|
||||
tfrms.update(x)
|
||||
|
||||
tic3 = time.time()
|
||||
|
||||
print('rms update time ({} trials): {} s'.format(n_trials, tic2 - tic1))
|
||||
print('tfrms update time ({} trials): {} s'.format(n_trials, tic3 - tic2))
|
||||
|
||||
|
||||
tic1 = time.time()
|
||||
for _ in range(n_trials):
|
||||
z1 = rms.mean
|
||||
|
||||
tic2 = time.time()
|
||||
for _ in range(n_trials):
|
||||
z2 = tfrms.mean
|
||||
|
||||
tic3 = time.time()
|
||||
|
||||
print('rms get mean time ({} trials): {} s'.format(n_trials, tic2 - tic1))
|
||||
print('tfrms get mean time ({} trials): {} s'.format(n_trials, tic3 - tic2))
|
||||
|
||||
|
||||
|
||||
'''
|
||||
options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) #pylint: disable=E1101
|
||||
run_metadata = tf.RunMetadata()
|
||||
profile_opts = dict(options=options, run_metadata=run_metadata)
|
||||
|
||||
|
||||
|
||||
from tensorflow.python.client import timeline
|
||||
fetched_timeline = timeline.Timeline(run_metadata.step_stats) #pylint: disable=E1101
|
||||
chrome_trace = fetched_timeline.generate_chrome_trace_format()
|
||||
outfile = '/tmp/timeline.json'
|
||||
with open(outfile, 'wt') as f:
|
||||
f.write(chrome_trace)
|
||||
print(f'Successfully saved profile to {outfile}. Exiting.')
|
||||
exit(0)
|
||||
'''
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
profile_tf_runningmeanstd()
|
||||
|
Reference in New Issue
Block a user