make ppo2 rnn test available.
This commit is contained in:
@@ -17,10 +17,10 @@ learn_kwargs = {
|
||||
# 'trpo_mpi': lambda e, p: trpo_mpi.learn(policy_fn=p(env=e), env=e, max_timesteps=30000, timesteps_per_batch=100, cg_iters=10, gamma=0.9, lam=1.0, max_kl=0.001)
|
||||
}
|
||||
|
||||
|
||||
alg_list = learn_kwargs.keys()
|
||||
rnn_list = ['lstm']
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize("alg", alg_list)
|
||||
@pytest.mark.parametrize("rnn", rnn_list)
|
||||
@@ -33,6 +33,9 @@ def test_fixed_sequence(alg, rnn):
|
||||
kwargs = learn_kwargs[alg]
|
||||
kwargs.update(common_kwargs)
|
||||
|
||||
if alg == 'ppo2':
|
||||
rnn = 'ppo_' + rnn
|
||||
|
||||
env_fn = lambda: FixedSequenceEnv(n_actions=10, episode_len=5)
|
||||
learn = lambda e: get_learn_function(alg)(
|
||||
env=e,
|
||||
@@ -45,6 +48,3 @@ def test_fixed_sequence(alg, rnn):
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_fixed_sequence('ppo2', 'lstm')
|
||||
|
||||
|
||||
|
||||
|
@@ -1,17 +1,15 @@
|
||||
import os
|
||||
import gym
|
||||
import tempfile
|
||||
import pytest
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
|
||||
from baselines.common.tests.envs.mnist_env import MnistEnv
|
||||
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
|
||||
from baselines.run import get_learn_function
|
||||
from baselines.common.tf_util import make_session, get_session
|
||||
|
||||
from functools import partial
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
import pytest
|
||||
import tensorflow as tf
|
||||
from baselines.common.tests.envs.mnist_env import MnistEnv
|
||||
from baselines.common.tf_util import make_session, get_session
|
||||
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
|
||||
from baselines.run import get_learn_function
|
||||
|
||||
learn_kwargs = {
|
||||
'deepq': {},
|
||||
@@ -37,12 +35,15 @@ def test_serialization(learn_fn, network_fn):
|
||||
Test if the trained model can be serialized
|
||||
'''
|
||||
|
||||
_network_kwargs = network_kwargs[network_fn]
|
||||
|
||||
if network_fn.endswith('lstm') and learn_fn in ['acer', 'acktr', 'trpo_mpi', 'deepq']:
|
||||
# TODO make acktr work with recurrent policies
|
||||
# and test
|
||||
# github issue: https://github.com/openai/baselines/issues/660
|
||||
return
|
||||
# TODO make acktr work with recurrent policies
|
||||
# and test
|
||||
# github issue: https://github.com/openai/baselines/issues/660
|
||||
return
|
||||
elif network_fn.endswith('lstm') and learn_fn == 'ppo2':
|
||||
network_fn = 'ppo_' + network_fn
|
||||
|
||||
def make_env():
|
||||
env = MnistEnv(episode_len=100)
|
||||
@@ -54,10 +55,9 @@ def test_serialization(learn_fn, network_fn):
|
||||
learn = get_learn_function(learn_fn)
|
||||
|
||||
kwargs = {}
|
||||
kwargs.update(network_kwargs[network_fn])
|
||||
kwargs.update(_network_kwargs)
|
||||
kwargs.update(learn_kwargs[learn_fn])
|
||||
|
||||
|
||||
learn = partial(learn, env=env, network=network_fn, seed=0, **kwargs)
|
||||
|
||||
with tempfile.TemporaryDirectory() as td:
|
||||
@@ -76,7 +76,7 @@ def test_serialization(learn_fn, network_fn):
|
||||
|
||||
for k, v in variables_dict1.items():
|
||||
np.testing.assert_allclose(v, variables_dict2[k], atol=0.01,
|
||||
err_msg='saved and loaded variable {} value mismatch'.format(k))
|
||||
err_msg='saved and loaded variable {} value mismatch'.format(k))
|
||||
|
||||
np.testing.assert_allclose(mean1, mean2, atol=0.5)
|
||||
np.testing.assert_allclose(std1, std2, atol=0.5)
|
||||
@@ -90,15 +90,15 @@ def test_coexistence(learn_fn, network_fn):
|
||||
'''
|
||||
|
||||
if learn_fn == 'deepq':
|
||||
# TODO enable multiple DQN models to be useable at the same time
|
||||
# github issue https://github.com/openai/baselines/issues/656
|
||||
return
|
||||
# TODO enable multiple DQN models to be useable at the same time
|
||||
# github issue https://github.com/openai/baselines/issues/656
|
||||
return
|
||||
|
||||
if network_fn.endswith('lstm') and learn_fn in ['acktr', 'trpo_mpi', 'deepq']:
|
||||
# TODO make acktr work with recurrent policies
|
||||
# and test
|
||||
# github issue: https://github.com/openai/baselines/issues/660
|
||||
return
|
||||
# TODO make acktr work with recurrent policies
|
||||
# and test
|
||||
# github issue: https://github.com/openai/baselines/issues/660
|
||||
return
|
||||
|
||||
env = DummyVecEnv([lambda: gym.make('CartPole-v0')])
|
||||
learn = get_learn_function(learn_fn)
|
||||
@@ -107,7 +107,7 @@ def test_coexistence(learn_fn, network_fn):
|
||||
kwargs.update(network_kwargs[network_fn])
|
||||
kwargs.update(learn_kwargs[learn_fn])
|
||||
|
||||
learn = partial(learn, env=env, network=network_fn, total_timesteps=0, **kwargs)
|
||||
learn = partial(learn, env=env, network=network_fn, total_timesteps=0, **kwargs)
|
||||
make_session(make_default=True, graph=tf.Graph())
|
||||
model1 = learn(seed=1)
|
||||
make_session(make_default=True, graph=tf.Graph())
|
||||
@@ -117,7 +117,6 @@ def test_coexistence(learn_fn, network_fn):
|
||||
model2.step(env.observation_space.sample())
|
||||
|
||||
|
||||
|
||||
def _serialize_variables():
|
||||
sess = get_session()
|
||||
variables = tf.trainable_variables()
|
||||
@@ -137,3 +136,24 @@ def _get_action_stats(model, ob):
|
||||
|
||||
return mean, std
|
||||
|
||||
if __name__ == '__main__':
|
||||
learn_kwargs = {
|
||||
'deepq': {},
|
||||
'a2c': {},
|
||||
'acktr': {},
|
||||
'acer': {},
|
||||
'ppo2': {'nminibatches': 1, 'nsteps': 10},
|
||||
'trpo_mpi': {},
|
||||
}
|
||||
|
||||
network_kwargs = {
|
||||
'mlp': {},
|
||||
'cnn': {'pad': 'SAME'},
|
||||
'lstm': {},
|
||||
'cnn_lnlstm': {'pad': 'SAME'}
|
||||
}
|
||||
|
||||
|
||||
# @pytest.mark.parametrize("learn_fn", learn_kwargs.keys())
|
||||
# @pytest.mark.parametrize("network_fn", network_kwargs.keys())
|
||||
test_serialization('ppo2', 'cnn')
|
||||
|
Reference in New Issue
Block a user