make ppo2 rnn test available.

This commit is contained in:
gyunt
2019-03-22 05:38:12 +09:00
parent 8ddb807db2
commit dbd9ad3f63
2 changed files with 50 additions and 30 deletions

View File

@@ -17,10 +17,10 @@ learn_kwargs = {
# 'trpo_mpi': lambda e, p: trpo_mpi.learn(policy_fn=p(env=e), env=e, max_timesteps=30000, timesteps_per_batch=100, cg_iters=10, gamma=0.9, lam=1.0, max_kl=0.001)
}
alg_list = learn_kwargs.keys()
rnn_list = ['lstm']
@pytest.mark.slow
@pytest.mark.parametrize("alg", alg_list)
@pytest.mark.parametrize("rnn", rnn_list)
@@ -33,6 +33,9 @@ def test_fixed_sequence(alg, rnn):
kwargs = learn_kwargs[alg]
kwargs.update(common_kwargs)
if alg == 'ppo2':
rnn = 'ppo_' + rnn
env_fn = lambda: FixedSequenceEnv(n_actions=10, episode_len=5)
learn = lambda e: get_learn_function(alg)(
env=e,
@@ -45,6 +48,3 @@ def test_fixed_sequence(alg, rnn):
if __name__ == '__main__':
test_fixed_sequence('ppo2', 'lstm')

View File

@@ -1,17 +1,15 @@
import os
import gym
import tempfile
import pytest
import tensorflow as tf
import numpy as np
from baselines.common.tests.envs.mnist_env import MnistEnv
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from baselines.run import get_learn_function
from baselines.common.tf_util import make_session, get_session
from functools import partial
import gym
import numpy as np
import pytest
import tensorflow as tf
from baselines.common.tests.envs.mnist_env import MnistEnv
from baselines.common.tf_util import make_session, get_session
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from baselines.run import get_learn_function
learn_kwargs = {
'deepq': {},
@@ -37,12 +35,15 @@ def test_serialization(learn_fn, network_fn):
Test if the trained model can be serialized
'''
_network_kwargs = network_kwargs[network_fn]
if network_fn.endswith('lstm') and learn_fn in ['acer', 'acktr', 'trpo_mpi', 'deepq']:
# TODO make acktr work with recurrent policies
# and test
# github issue: https://github.com/openai/baselines/issues/660
return
# TODO make acktr work with recurrent policies
# and test
# github issue: https://github.com/openai/baselines/issues/660
return
elif network_fn.endswith('lstm') and learn_fn == 'ppo2':
network_fn = 'ppo_' + network_fn
def make_env():
env = MnistEnv(episode_len=100)
@@ -54,10 +55,9 @@ def test_serialization(learn_fn, network_fn):
learn = get_learn_function(learn_fn)
kwargs = {}
kwargs.update(network_kwargs[network_fn])
kwargs.update(_network_kwargs)
kwargs.update(learn_kwargs[learn_fn])
learn = partial(learn, env=env, network=network_fn, seed=0, **kwargs)
with tempfile.TemporaryDirectory() as td:
@@ -76,7 +76,7 @@ def test_serialization(learn_fn, network_fn):
for k, v in variables_dict1.items():
np.testing.assert_allclose(v, variables_dict2[k], atol=0.01,
err_msg='saved and loaded variable {} value mismatch'.format(k))
err_msg='saved and loaded variable {} value mismatch'.format(k))
np.testing.assert_allclose(mean1, mean2, atol=0.5)
np.testing.assert_allclose(std1, std2, atol=0.5)
@@ -90,15 +90,15 @@ def test_coexistence(learn_fn, network_fn):
'''
if learn_fn == 'deepq':
# TODO enable multiple DQN models to be useable at the same time
# github issue https://github.com/openai/baselines/issues/656
return
# TODO enable multiple DQN models to be useable at the same time
# github issue https://github.com/openai/baselines/issues/656
return
if network_fn.endswith('lstm') and learn_fn in ['acktr', 'trpo_mpi', 'deepq']:
# TODO make acktr work with recurrent policies
# and test
# github issue: https://github.com/openai/baselines/issues/660
return
# TODO make acktr work with recurrent policies
# and test
# github issue: https://github.com/openai/baselines/issues/660
return
env = DummyVecEnv([lambda: gym.make('CartPole-v0')])
learn = get_learn_function(learn_fn)
@@ -107,7 +107,7 @@ def test_coexistence(learn_fn, network_fn):
kwargs.update(network_kwargs[network_fn])
kwargs.update(learn_kwargs[learn_fn])
learn = partial(learn, env=env, network=network_fn, total_timesteps=0, **kwargs)
learn = partial(learn, env=env, network=network_fn, total_timesteps=0, **kwargs)
make_session(make_default=True, graph=tf.Graph())
model1 = learn(seed=1)
make_session(make_default=True, graph=tf.Graph())
@@ -117,7 +117,6 @@ def test_coexistence(learn_fn, network_fn):
model2.step(env.observation_space.sample())
def _serialize_variables():
sess = get_session()
variables = tf.trainable_variables()
@@ -137,3 +136,24 @@ def _get_action_stats(model, ob):
return mean, std
if __name__ == '__main__':
learn_kwargs = {
'deepq': {},
'a2c': {},
'acktr': {},
'acer': {},
'ppo2': {'nminibatches': 1, 'nsteps': 10},
'trpo_mpi': {},
}
network_kwargs = {
'mlp': {},
'cnn': {'pad': 'SAME'},
'lstm': {},
'cnn_lnlstm': {'pad': 'SAME'}
}
# @pytest.mark.parametrize("learn_fn", learn_kwargs.keys())
# @pytest.mark.parametrize("network_fn", network_kwargs.keys())
test_serialization('ppo2', 'cnn')