add RNN class.

This commit is contained in:
gyunt
2019-04-08 18:35:05 +09:00
parent 1dbfbaac16
commit e6f0d98b68
3 changed files with 55 additions and 60 deletions

View File

@@ -1,18 +1,32 @@
import numpy as np
import tensorflow as tf
import tensorflow.contrib.layers as layers
from baselines.a2c import utils
from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch
from baselines.common.mpi_running_mean_std import RunningMeanStd
import tensorflow.contrib.layers as layers
mapping = {}
def register(name):
def register(name, is_rnn=False):
def _thunk(func):
if is_rnn:
func = RNN(func)
mapping[name] = func
return func
return _thunk
class RNN(object):
def __init__(self, func):
self._func = func
def __call__(self, *args, **kwargs):
return self._func(*args, **kwargs)
def nature_cnn(unscaled_images, **conv_kwargs):
"""
CNN from Nature paper.
@@ -46,6 +60,7 @@ def mlp(num_layers=2, num_hidden=64, activation=tf.tanh, layer_norm=False):
function that builds fully connected network with a given input tensor / placeholder
"""
def network_fn(X):
h = tf.layers.flatten(X)
for i in range(num_layers):
@@ -63,6 +78,7 @@ def mlp(num_layers=2, num_hidden=64, activation=tf.tanh, layer_norm=False):
def cnn(**conv_kwargs):
def network_fn(X):
return nature_cnn(X, **conv_kwargs)
return network_fn
@@ -77,10 +93,11 @@ def cnn_small(**conv_kwargs):
h = conv_to_fc(h)
h = activ(fc(h, 'fc1', nh=128, init_scale=np.sqrt(2)))
return h
return network_fn
@register("lstm")
@register("lstm", is_rnn=True)
def lstm(nlstm=128, layer_norm=False):
"""
Builds LSTM (Long-Short Term Memory) network to be used in a policy.
@@ -116,8 +133,8 @@ def lstm(nlstm=128, layer_norm=False):
h = tf.layers.flatten(X)
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states
M = tf.placeholder(tf.float32, [nbatch]) # mask (done t-1)
S = tf.placeholder(tf.float32, [nenv, 2 * nlstm]) # states
xs = batch_to_seq(h, nenv, nsteps)
ms = batch_to_seq(M, nenv, nsteps)
@@ -130,12 +147,12 @@ def lstm(nlstm=128, layer_norm=False):
h = seq_to_batch(h5)
initial_state = np.zeros(S.shape.as_list(), dtype=float)
return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state}
return h, {'S': S, 'M': M, 'state': snew, 'initial_state': initial_state}
return network_fn
@register("cnn_lstm")
@register("cnn_lstm", is_rnn=True)
def cnn_lstm(nlstm=128, layer_norm=False, **conv_kwargs):
def network_fn(X, nenv=1):
nbatch = X.shape[0]
@@ -143,8 +160,8 @@ def cnn_lstm(nlstm=128, layer_norm=False, **conv_kwargs):
h = nature_cnn(X, **conv_kwargs)
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states
M = tf.placeholder(tf.float32, [nbatch]) # mask (done t-1)
S = tf.placeholder(tf.float32, [nenv, 2 * nlstm]) # states
xs = batch_to_seq(h, nenv, nsteps)
ms = batch_to_seq(M, nenv, nsteps)
@@ -157,12 +174,12 @@ def cnn_lstm(nlstm=128, layer_norm=False, **conv_kwargs):
h = seq_to_batch(h5)
initial_state = np.zeros(S.shape.as_list(), dtype=float)
return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state}
return h, {'S': S, 'M': M, 'state': snew, 'initial_state': initial_state}
return network_fn
@register("cnn_lnlstm")
@register("cnn_lnlstm", is_rnn=True)
def cnn_lnlstm(nlstm=128, **conv_kwargs):
return cnn_lstm(nlstm, layer_norm=True, **conv_kwargs)
@@ -195,8 +212,10 @@ def conv_only(convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], **conv_kwargs):
**conv_kwargs)
return out
return network_fn
def _normalize_clip_observation(x, clip_range=[-5.0, 5.0]):
rms = RunningMeanStd(shape=x.shape[1:])
norm_x = tf.clip_by_value((x - rms.mean) / rms.std, min(clip_range), max(clip_range))

View File

@@ -2,10 +2,10 @@ import numpy as np
import tensorflow as tf
from baselines.a2c.utils import ortho_init, fc
from baselines.common.models import register
from baselines.common.models import register, nature_cnn, RNN
@register("ppo_lstm")
@register("ppo_lstm", is_rnn=True)
def ppo_lstm(nlstm=128, layer_norm=False):
def network_fn(input, mask):
memory_size = nlstm * 2
@@ -27,13 +27,13 @@ def ppo_lstm(nlstm=128, layer_norm=False):
h, next_state = lstm(input, mask, state, scope='lstm', nh=nlstm)
return h, next_state
return state, _network_fn
return state, RNN(_network_fn)
return network_fn
return RNN(network_fn)
@register("ppo_cnn_lstm")
def ppo_cnn_lstm(nlstm=128, layer_norm=False, pad='VALID', **conv_kwargs):
@register("ppo_cnn_lstm", is_rnn=True)
def ppo_cnn_lstm(nlstm=128, layer_norm=False, **conv_kwargs):
def network_fn(input, mask):
memory_size = nlstm * 2
nbatch = input.shape[0]
@@ -48,27 +48,7 @@ def ppo_cnn_lstm(nlstm=128, layer_norm=False, pad='VALID', **conv_kwargs):
mask = tf.to_float(mask)
initializer = ortho_init(np.sqrt(2))
h = tf.contrib.layers.conv2d(input,
num_outputs=32,
kernel_size=8,
stride=4,
padding=pad,
weights_initializer=initializer,
**conv_kwargs)
h = tf.contrib.layers.conv2d(h,
num_outputs=64,
kernel_size=4,
stride=2,
padding=pad,
weights_initializer=initializer,
**conv_kwargs)
h = tf.contrib.layers.conv2d(h,
num_outputs=64,
kernel_size=3,
stride=1,
padding=pad,
weights_initializer=initializer,
**conv_kwargs)
h = nature_cnn(input, **conv_kwargs)
h = tf.layers.flatten(h)
h = tf.layers.dense(h, units=512, activation=tf.nn.relu, kernel_initializer=initializer)
@@ -78,17 +58,17 @@ def ppo_cnn_lstm(nlstm=128, layer_norm=False, pad='VALID', **conv_kwargs):
h, next_state = lstm(h, mask, state, scope='lstm', nh=nlstm)
return h, next_state
return state, _network_fn
return state, RNN(_network_fn)
return network_fn
return RNN(network_fn)
@register("ppo_cnn_lnlstm")
@register("ppo_cnn_lnlstm", is_rnn=True)
def ppo_cnn_lnlstm(nlstm=128, **conv_kwargs):
return ppo_cnn_lstm(nlstm, layer_norm=True, **conv_kwargs)
@register("ppo_gru")
@register("ppo_gru", is_rnn=True)
def ppo_gru(nlstm=128):
def network_fn(input, mask):
memory_size = nlstm
@@ -107,12 +87,12 @@ def ppo_gru(nlstm=128):
h, next_state = gru(input, mask, state, nh=nlstm)
return h, next_state
return state, _network_fn
return state, RNN(_network_fn)
return network_fn
return RNN(network_fn)
@register("ppo_lstm_mlp")
@register("ppo_lstm_mlp", is_rnn=True)
def ppo_lstm_mlp(nlstm=128, layer_norm=False):
def network_fn(input, mask):
memory_size = nlstm * 2
@@ -138,12 +118,12 @@ def ppo_lstm_mlp(nlstm=128, layer_norm=False):
h = activation(h)
return h, next_state
return state, _network_fn
return state, RNN(_network_fn)
return network_fn
return RNN(network_fn)
@register("ppo_gru_mlp")
@register("ppo_gru_mlp", is_rnn=True)
def ppo_gru_mlp(nlstm=128):
def network_fn(input, mask):
memory_size = nlstm
@@ -170,9 +150,9 @@ def ppo_gru_mlp(nlstm=128):
return h, next_state
return state, _network_fn
return state, RNN(_network_fn)
return network_fn
return RNN(network_fn)
def lstm(x, m, s, scope, nh, init_scale=1.0):

View File

@@ -1,12 +1,12 @@
import inspect
import gym
import numpy as np
import tensorflow as tf
from baselines.a2c.utils import fc
from baselines.common import tf_util
from baselines.common.distributions import make_pdtype
from baselines.common.input import observation_placeholder, encode_observation
from baselines.common.models import RNN
from baselines.common.models import get_network_builder
from baselines.common.tf_util import adjust_shape
@@ -125,7 +125,7 @@ def build_ppo_policy(env, policy_network, value_network=None, estimate_q=False,
encoded_x = encode_observation(ob_space, X)
with tf.variable_scope('load_rnn_memory'):
if is_rnn_network(policy_network):
if isinstance(policy_network, RNN):
policy_state, policy_network_ = policy_network(encoded_x, dones)
else:
policy_network_ = policy_network
@@ -139,7 +139,7 @@ def build_ppo_policy(env, policy_network, value_network=None, estimate_q=False,
assert callable(value_network)
value_network_ = value_network
if is_rnn_network(value_network_):
if isinstance(value_network_, RNN):
value_state, value_network_ = value_network_(encoded_x, dones)
if policy_state or value_state:
@@ -154,7 +154,7 @@ def build_ppo_policy(env, policy_network, value_network=None, estimate_q=False,
index += size
with tf.variable_scope('policy_latent', reuse=tf.AUTO_REUSE):
if is_rnn_network(policy_network_):
if isinstance(policy_network_, RNN):
policy_latent, next_policy_state = \
policy_network_(encoded_x, dones, state_map[policy_state])
next_states_list.append(next_policy_state)
@@ -164,7 +164,7 @@ def build_ppo_policy(env, policy_network, value_network=None, estimate_q=False,
with tf.variable_scope('value_latent', reuse=tf.AUTO_REUSE):
if value_network_ == 'shared':
value_latent = policy_latent
elif is_rnn_network(value_network_):
elif isinstance(value_network_, RNN):
value_latent, next_value_state = \
value_network_(encoded_x, dones, state_map[value_state])
next_states_list.append(next_value_state)
@@ -201,7 +201,3 @@ def build_ppo_policy(env, policy_network, value_network=None, estimate_q=False,
return policy
return policy_fn
def is_rnn_network(network):
return 'mask' in inspect.getfullargspec(network).args