fix trpo_mpi bug where logstd wasn’t included
This commit is contained in:
@@ -146,8 +146,9 @@ def learn(env, policy_func, reward_giver, expert_dataset, rank,
|
||||
dist = meankl
|
||||
|
||||
all_var_list = pi.get_trainable_variables()
|
||||
var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
|
||||
vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
|
||||
var_list = [v for v in all_var_list if v.name.split("/")[1] == "pol"]
|
||||
vf_var_list = [v for v in all_var_list if v.name.split("/")[1] == "vf"]
|
||||
assert len(var_list) == len(vf_var_list) + 1
|
||||
d_adam = MpiAdam(reward_giver.get_trainable_variables())
|
||||
vfadam = MpiAdam(vf_var_list)
|
||||
|
||||
|
@@ -22,21 +22,23 @@ class MlpPolicy(object):
|
||||
with tf.variable_scope("obfilter"):
|
||||
self.ob_rms = RunningMeanStd(shape=ob_space.shape)
|
||||
|
||||
obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0)
|
||||
last_out = obz
|
||||
for i in range(num_hid_layers):
|
||||
last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name="vffc%i"%(i+1), kernel_initializer=U.normc_initializer(1.0)))
|
||||
self.vpred = tf.layers.dense(last_out, 1, name='vffinal', kernel_initializer=U.normc_initializer(1.0))[:,0]
|
||||
with tf.variable_scope('vf'):
|
||||
obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0)
|
||||
last_out = obz
|
||||
for i in range(num_hid_layers):
|
||||
last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name="fc%i"%(i+1), kernel_initializer=U.normc_initializer(1.0)))
|
||||
self.vpred = tf.layers.dense(last_out, 1, name='final', kernel_initializer=U.normc_initializer(1.0))[:,0]
|
||||
|
||||
last_out = obz
|
||||
for i in range(num_hid_layers):
|
||||
last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name='polfc%i'%(i+1), kernel_initializer=U.normc_initializer(1.0)))
|
||||
if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box):
|
||||
mean = tf.layers.dense(last_out, pdtype.param_shape()[0]//2, name='polfinal', kernel_initializer=U.normc_initializer(0.01))
|
||||
logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer())
|
||||
pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
|
||||
else:
|
||||
pdparam = tf.layers.dense(last_out, pdtype.param_shape()[0], name='polfinal', kernel_initializer=U.normc_initializer(0.01))
|
||||
with tf.variable_scope('pol'):
|
||||
last_out = obz
|
||||
for i in range(num_hid_layers):
|
||||
last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name='fc%i'%(i+1), kernel_initializer=U.normc_initializer(1.0)))
|
||||
if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box):
|
||||
mean = tf.layers.dense(last_out, pdtype.param_shape()[0]//2, name='final', kernel_initializer=U.normc_initializer(0.01))
|
||||
logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer())
|
||||
pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
|
||||
else:
|
||||
pdparam = tf.layers.dense(last_out, pdtype.param_shape()[0], name='final', kernel_initializer=U.normc_initializer(0.01))
|
||||
|
||||
self.pd = pdtype.pdfromflat(pdparam)
|
||||
|
||||
|
Reference in New Issue
Block a user