Compare commits
13 Commits
her-fixes
...
peterz_tes
Author | SHA1 | Date | |
---|---|---|---|
|
2c818245d6 | ||
|
ae8e7fd16b | ||
|
f272969325 | ||
|
a6b1bc70f1 | ||
|
36ee5d1707 | ||
|
24fe3d6576 | ||
|
9cb7ece338 | ||
|
9cf95a0054 | ||
|
8b781038cc | ||
|
69f25c6028 | ||
|
2b0283b9db | ||
|
1f8a03f3a6 | ||
|
3cc7df0608 |
14
.travis.yml
Normal file
14
.travis.yml
Normal file
@@ -0,0 +1,14 @@
|
||||
language: python
|
||||
python:
|
||||
- "3.6"
|
||||
|
||||
services:
|
||||
- docker
|
||||
|
||||
install:
|
||||
- pip install flake8
|
||||
- docker build . -t baselines-test
|
||||
|
||||
script:
|
||||
- flake8 --select=F baselines/common
|
||||
- docker run baselines-test pytest
|
20
Dockerfile
Normal file
20
Dockerfile
Normal file
@@ -0,0 +1,20 @@
|
||||
FROM ubuntu:16.04
|
||||
|
||||
RUN apt-get -y update && apt-get -y install git wget python-dev python3-dev libopenmpi-dev python-pip zlib1g-dev cmake
|
||||
ENV CODE_DIR /root/code
|
||||
ENV VENV /root/venv
|
||||
|
||||
COPY . $CODE_DIR/baselines
|
||||
RUN \
|
||||
pip install virtualenv && \
|
||||
virtualenv $VENV --python=python3 && \
|
||||
. $VENV/bin/activate && \
|
||||
cd $CODE_DIR && \
|
||||
pip install --upgrade pip && \
|
||||
pip install -e baselines && \
|
||||
pip install pytest
|
||||
|
||||
ENV PATH=$VENV/bin:$PATH
|
||||
WORKDIR $CODE_DIR/baselines
|
||||
|
||||
CMD /bin/bash
|
54
README.md
54
README.md
@@ -1,4 +1,4 @@
|
||||
<img src="data/logo.jpg" width=25% align="right" />
|
||||
<img src="data/logo.jpg" width=25% align="right" /> [](https://travis-ci.org/openai/baselines)
|
||||
|
||||
# Baselines
|
||||
|
||||
@@ -6,13 +6,63 @@ OpenAI Baselines is a set of high-quality implementations of reinforcement learn
|
||||
|
||||
These algorithms will make it easier for the research community to replicate, refine, and identify new ideas, and will create good baselines to build research on top of. Our DQN implementation and its variants are roughly on par with the scores in published papers. We expect they will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones.
|
||||
|
||||
You can install it by typing:
|
||||
## Prerequisites
|
||||
Baselines requires python3 (>=3.5) with the development headers. You'll also need system packages CMake, OpenMPI and zlib. Those can be installed as follows
|
||||
### Ubuntu
|
||||
|
||||
```bash
|
||||
sudo apt-get update && sudo apt-get install cmake libopenmpi-dev python3-dev zlib1g-dev
|
||||
```
|
||||
|
||||
### Mac OS X
|
||||
Installation of system packages on Mac requires [Homebrew](https://brew.sh). With Homebrew installed, run the follwing:
|
||||
```bash
|
||||
brew install cmake openmpi
|
||||
```
|
||||
|
||||
## Virtual environment
|
||||
From the general python package sanity perspective, it is a good idea to use virtual environments (virtualenvs) to make sure packages from different projects do not interfere with each other. You can install virtualenv (which is itself a pip package) via
|
||||
```bash
|
||||
pip install virtualenv
|
||||
```
|
||||
Virtualenvs are essentially folders that have copies of python executable and all python packages.
|
||||
To create a virtualenv called venv with python3, one runs
|
||||
```bash
|
||||
virtualenv /path/to/venv --python=python3
|
||||
```
|
||||
To activate a virtualenv:
|
||||
```
|
||||
. /path/to/venv/bin/activate
|
||||
```
|
||||
More thorough tutorial on virtualenvs and options can be found [here](https://virtualenv.pypa.io/en/stable/)
|
||||
|
||||
|
||||
## Installation
|
||||
Clone the repo and cd into it:
|
||||
```bash
|
||||
git clone https://github.com/openai/baselines.git
|
||||
cd baselines
|
||||
```
|
||||
If using virtualenv, create a new virtualenv and activate it
|
||||
```bash
|
||||
virtualenv env --python=python3
|
||||
. env/bin/activate
|
||||
```
|
||||
Install baselines package
|
||||
```bash
|
||||
pip install -e .
|
||||
```
|
||||
### MuJoCo
|
||||
Some of the baselines examples use [MuJoCo](http://www.mujoco.org) (multi-joint dynamics in contact) physics simulator, which is proprietary and requires binaries and a license (temporary 30-day license can be obtained from [www.mujoco.org](http://www.mujoco.org)). Instructions on setting up MuJoCo can be found [here](https://github.com/openai/mujoco-py)
|
||||
|
||||
## Testing the installation
|
||||
All unit tests in baselines can be run using pytest runner:
|
||||
```
|
||||
pip install pytest
|
||||
pytest
|
||||
```
|
||||
|
||||
## Subpackages
|
||||
|
||||
- [A2C](baselines/a2c)
|
||||
- [ACER](baselines/acer)
|
||||
|
@@ -1,16 +1,12 @@
|
||||
import os
|
||||
import os.path as osp
|
||||
import gym
|
||||
import time
|
||||
import joblib
|
||||
import logging
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from baselines import logger
|
||||
|
||||
from baselines.common import set_global_seeds, explained_variance
|
||||
from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv
|
||||
from baselines.common.atari_wrappers import wrap_deepmind
|
||||
from baselines.common.runners import AbstractEnvRunner
|
||||
from baselines.common import tf_util
|
||||
|
||||
from baselines.a2c.utils import discount_with_dones
|
||||
@@ -24,7 +20,6 @@ class Model(object):
|
||||
alpha=0.99, epsilon=1e-5, total_timesteps=int(80e6), lrschedule='linear'):
|
||||
|
||||
sess = tf_util.make_session()
|
||||
nact = ac_space.n
|
||||
nbatch = nenvs*nsteps
|
||||
|
||||
A = tf.placeholder(tf.int32, [nbatch])
|
||||
@@ -75,7 +70,7 @@ class Model(object):
|
||||
restores = []
|
||||
for p, loaded_p in zip(params, loaded_params):
|
||||
restores.append(p.assign(loaded_p))
|
||||
ps = sess.run(restores)
|
||||
sess.run(restores)
|
||||
|
||||
self.train = train
|
||||
self.train_model = train_model
|
||||
@@ -87,21 +82,11 @@ class Model(object):
|
||||
self.load = load
|
||||
tf.global_variables_initializer().run(session=sess)
|
||||
|
||||
class Runner(object):
|
||||
class Runner(AbstractEnvRunner):
|
||||
|
||||
def __init__(self, env, model, nsteps=5, gamma=0.99):
|
||||
self.env = env
|
||||
self.model = model
|
||||
nh, nw, nc = env.observation_space.shape
|
||||
nenv = env.num_envs
|
||||
self.batch_ob_shape = (nenv*nsteps, nh, nw, nc)
|
||||
self.obs = np.zeros((nenv, nh, nw, nc), dtype=np.uint8)
|
||||
self.nc = nc
|
||||
obs = env.reset()
|
||||
super().__init__(env=env, model=model, nsteps=nsteps)
|
||||
self.gamma = gamma
|
||||
self.nsteps = nsteps
|
||||
self.states = model.initial_state
|
||||
self.dones = [False for _ in range(nenv)]
|
||||
|
||||
def run(self):
|
||||
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones = [],[],[],[],[]
|
||||
@@ -146,7 +131,6 @@ class Runner(object):
|
||||
return mb_obs, mb_states, mb_rewards, mb_masks, mb_actions, mb_values
|
||||
|
||||
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100):
|
||||
tf.reset_default_graph()
|
||||
set_global_seeds(seed)
|
||||
|
||||
nenvs = env.num_envs
|
||||
@@ -173,3 +157,4 @@ def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, e
|
||||
logger.record_tabular("explained_variance", float(ev))
|
||||
logger.dump_tabular()
|
||||
env.close()
|
||||
return model
|
||||
|
@@ -2,39 +2,36 @@ import numpy as np
|
||||
import tensorflow as tf
|
||||
from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch, lstm, lnlstm
|
||||
from baselines.common.distributions import make_pdtype
|
||||
from baselines.common.input import observation_input
|
||||
|
||||
def nature_cnn(unscaled_images):
|
||||
def nature_cnn(unscaled_images, **conv_kwargs):
|
||||
"""
|
||||
CNN from Nature paper.
|
||||
"""
|
||||
scaled_images = tf.cast(unscaled_images, tf.float32) / 255.
|
||||
activ = tf.nn.relu
|
||||
h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2)))
|
||||
h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2)))
|
||||
h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2)))
|
||||
h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2),
|
||||
**conv_kwargs))
|
||||
h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs))
|
||||
h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs))
|
||||
h3 = conv_to_fc(h3)
|
||||
return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
|
||||
|
||||
class LnLstmPolicy(object):
|
||||
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
|
||||
nenv = nbatch // nsteps
|
||||
nh, nw, nc = ob_space.shape
|
||||
ob_shape = (nbatch, nh, nw, nc)
|
||||
nact = ac_space.n
|
||||
X = tf.placeholder(tf.uint8, ob_shape) #obs
|
||||
X, processed_x = observation_input(ob_space, nbatch)
|
||||
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
|
||||
S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
|
||||
self.pdtype = make_pdtype(ac_space)
|
||||
with tf.variable_scope("model", reuse=reuse):
|
||||
h = nature_cnn(X)
|
||||
h = nature_cnn(processed_x)
|
||||
xs = batch_to_seq(h, nenv, nsteps)
|
||||
ms = batch_to_seq(M, nenv, nsteps)
|
||||
h5, snew = lnlstm(xs, ms, S, 'lstm1', nh=nlstm)
|
||||
h5 = seq_to_batch(h5)
|
||||
pi = fc(h5, 'pi', nact)
|
||||
vf = fc(h5, 'v', 1)
|
||||
|
||||
self.pdtype = make_pdtype(ac_space)
|
||||
self.pd = self.pdtype.pdfromflat(pi)
|
||||
self.pd, self.pi = self.pdtype.pdfromlatent(h5)
|
||||
|
||||
v0 = vf[:, 0]
|
||||
a0 = self.pd.sample()
|
||||
@@ -50,7 +47,6 @@ class LnLstmPolicy(object):
|
||||
self.X = X
|
||||
self.M = M
|
||||
self.S = S
|
||||
self.pi = pi
|
||||
self.vf = vf
|
||||
self.step = step
|
||||
self.value = value
|
||||
@@ -59,11 +55,9 @@ class LstmPolicy(object):
|
||||
|
||||
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
|
||||
nenv = nbatch // nsteps
|
||||
self.pdtype = make_pdtype(ac_space)
|
||||
X, processed_x = observation_input(ob_space, nbatch)
|
||||
|
||||
nh, nw, nc = ob_space.shape
|
||||
ob_shape = (nbatch, nh, nw, nc)
|
||||
nact = ac_space.n
|
||||
X = tf.placeholder(tf.uint8, ob_shape) #obs
|
||||
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
|
||||
S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
|
||||
with tf.variable_scope("model", reuse=reuse):
|
||||
@@ -72,11 +66,8 @@ class LstmPolicy(object):
|
||||
ms = batch_to_seq(M, nenv, nsteps)
|
||||
h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm)
|
||||
h5 = seq_to_batch(h5)
|
||||
pi = fc(h5, 'pi', nact)
|
||||
vf = fc(h5, 'v', 1)
|
||||
|
||||
self.pdtype = make_pdtype(ac_space)
|
||||
self.pd = self.pdtype.pdfromflat(pi)
|
||||
self.pd, self.pi = self.pdtype.pdfromlatent(h5)
|
||||
|
||||
v0 = vf[:, 0]
|
||||
a0 = self.pd.sample()
|
||||
@@ -92,25 +83,19 @@ class LstmPolicy(object):
|
||||
self.X = X
|
||||
self.M = M
|
||||
self.S = S
|
||||
self.pi = pi
|
||||
self.vf = vf
|
||||
self.step = step
|
||||
self.value = value
|
||||
|
||||
class CnnPolicy(object):
|
||||
|
||||
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False): #pylint: disable=W0613
|
||||
nh, nw, nc = ob_space.shape
|
||||
ob_shape = (nbatch, nh, nw, nc)
|
||||
nact = ac_space.n
|
||||
X = tf.placeholder(tf.uint8, ob_shape) #obs
|
||||
with tf.variable_scope("model", reuse=reuse):
|
||||
h = nature_cnn(X)
|
||||
pi = fc(h, 'pi', nact, init_scale=0.01)
|
||||
vf = fc(h, 'v', 1)[:,0]
|
||||
|
||||
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False, **conv_kwargs): #pylint: disable=W0613
|
||||
self.pdtype = make_pdtype(ac_space)
|
||||
self.pd = self.pdtype.pdfromflat(pi)
|
||||
X, processed_x = observation_input(ob_space, nbatch)
|
||||
with tf.variable_scope("model", reuse=reuse):
|
||||
h = nature_cnn(processed_x, **conv_kwargs)
|
||||
vf = fc(h, 'v', 1)[:,0]
|
||||
self.pd, self.pi = self.pdtype.pdfromlatent(h, init_scale=0.01)
|
||||
|
||||
a0 = self.pd.sample()
|
||||
neglogp0 = self.pd.neglogp(a0)
|
||||
@@ -124,31 +109,25 @@ class CnnPolicy(object):
|
||||
return sess.run(vf, {X:ob})
|
||||
|
||||
self.X = X
|
||||
self.pi = pi
|
||||
self.vf = vf
|
||||
self.step = step
|
||||
self.value = value
|
||||
|
||||
class MlpPolicy(object):
|
||||
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False): #pylint: disable=W0613
|
||||
ob_shape = (nbatch,) + ob_space.shape
|
||||
actdim = ac_space.shape[0]
|
||||
X = tf.placeholder(tf.float32, ob_shape, name='Ob') #obs
|
||||
with tf.variable_scope("model", reuse=reuse):
|
||||
activ = tf.tanh
|
||||
h1 = activ(fc(X, 'pi_fc1', nh=64, init_scale=np.sqrt(2)))
|
||||
h2 = activ(fc(h1, 'pi_fc2', nh=64, init_scale=np.sqrt(2)))
|
||||
pi = fc(h2, 'pi', actdim, init_scale=0.01)
|
||||
h1 = activ(fc(X, 'vf_fc1', nh=64, init_scale=np.sqrt(2)))
|
||||
h2 = activ(fc(h1, 'vf_fc2', nh=64, init_scale=np.sqrt(2)))
|
||||
vf = fc(h2, 'vf', 1)[:,0]
|
||||
logstd = tf.get_variable(name="logstd", shape=[1, actdim],
|
||||
initializer=tf.zeros_initializer())
|
||||
|
||||
pdparam = tf.concat([pi, pi * 0.0 + logstd], axis=1)
|
||||
|
||||
self.pdtype = make_pdtype(ac_space)
|
||||
self.pd = self.pdtype.pdfromflat(pdparam)
|
||||
with tf.variable_scope("model", reuse=reuse):
|
||||
X, processed_x = observation_input(ob_space, nbatch)
|
||||
activ = tf.tanh
|
||||
processed_x = tf.layers.flatten(processed_x)
|
||||
pi_h1 = activ(fc(processed_x, 'pi_fc1', nh=64, init_scale=np.sqrt(2)))
|
||||
pi_h2 = activ(fc(pi_h1, 'pi_fc2', nh=64, init_scale=np.sqrt(2)))
|
||||
vf_h1 = activ(fc(processed_x, 'vf_fc1', nh=64, init_scale=np.sqrt(2)))
|
||||
vf_h2 = activ(fc(vf_h1, 'vf_fc2', nh=64, init_scale=np.sqrt(2)))
|
||||
vf = fc(vf_h2, 'vf', 1)[:,0]
|
||||
|
||||
self.pd, self.pi = self.pdtype.pdfromlatent(pi_h2, init_scale=0.01)
|
||||
|
||||
|
||||
a0 = self.pd.sample()
|
||||
neglogp0 = self.pd.neglogp(a0)
|
||||
@@ -162,7 +141,6 @@ class MlpPolicy(object):
|
||||
return sess.run(vf, {X:ob})
|
||||
|
||||
self.X = X
|
||||
self.pi = pi
|
||||
self.vf = vf
|
||||
self.step = step
|
||||
self.value = value
|
||||
|
@@ -39,7 +39,7 @@ def ortho_init(scale=1.0):
|
||||
return (scale * q[:shape[0], :shape[1]]).astype(np.float32)
|
||||
return _ortho_init
|
||||
|
||||
def conv(x, scope, *, nf, rf, stride, pad='VALID', init_scale=1.0, data_format='NHWC'):
|
||||
def conv(x, scope, *, nf, rf, stride, pad='VALID', init_scale=1.0, data_format='NHWC', one_dim_bias=False):
|
||||
if data_format == 'NHWC':
|
||||
channel_ax = 3
|
||||
strides = [1, stride, stride, 1]
|
||||
@@ -50,12 +50,14 @@ def conv(x, scope, *, nf, rf, stride, pad='VALID', init_scale=1.0, data_format='
|
||||
bshape = [1, nf, 1, 1]
|
||||
else:
|
||||
raise NotImplementedError
|
||||
bias_var_shape = [nf] if one_dim_bias else [1, nf, 1, 1]
|
||||
nin = x.get_shape()[channel_ax].value
|
||||
wshape = [rf, rf, nin, nf]
|
||||
with tf.variable_scope(scope):
|
||||
w = tf.get_variable("w", wshape, initializer=ortho_init(init_scale))
|
||||
b = tf.get_variable("b", [1, nf, 1, 1], initializer=tf.constant_initializer(0.0))
|
||||
if data_format == 'NHWC': b = tf.reshape(b, bshape)
|
||||
b = tf.get_variable("b", bias_var_shape, initializer=tf.constant_initializer(0.0))
|
||||
if not one_dim_bias and data_format == 'NHWC':
|
||||
b = tf.reshape(b, bshape)
|
||||
return b + tf.nn.conv2d(x, w, strides=strides, padding=pad, data_format=data_format)
|
||||
|
||||
def fc(x, scope, nh, *, init_scale=1.0, init_bias=0.0):
|
||||
|
@@ -5,6 +5,7 @@ import tensorflow as tf
|
||||
from baselines import logger
|
||||
|
||||
from baselines.common import set_global_seeds
|
||||
from baselines.common.runners import AbstractEnvRunner
|
||||
|
||||
from baselines.a2c.utils import batch_to_seq, seq_to_batch
|
||||
from baselines.a2c.utils import Scheduler, make_path, find_trainable_variables
|
||||
@@ -13,6 +14,8 @@ from baselines.a2c.utils import EpisodeStats
|
||||
from baselines.a2c.utils import get_by_index, check_shape, avg_norm, gradient_add, q_explained_variance
|
||||
from baselines.acer.buffer import Buffer
|
||||
|
||||
import os.path as osp
|
||||
|
||||
# remove last step
|
||||
def strip(var, nenvs, nsteps, flat = False):
|
||||
vars = batch_to_seq(var, nenvs, nsteps + 1, flat)
|
||||
@@ -209,11 +212,10 @@ class Model(object):
|
||||
self.initial_state = step_model.initial_state
|
||||
tf.global_variables_initializer().run(session=sess)
|
||||
|
||||
class Runner(object):
|
||||
class Runner(AbstractEnvRunner):
|
||||
def __init__(self, env, model, nsteps, nstack):
|
||||
self.env = env
|
||||
super().__init__(env=env, model=model, nsteps=nsteps)
|
||||
self.nstack = nstack
|
||||
self.model = model
|
||||
nh, nw, nc = env.observation_space.shape
|
||||
self.nc = nc # nc = 1 for atari, but just in case
|
||||
self.nenv = nenv = env.num_envs
|
||||
@@ -223,9 +225,6 @@ class Runner(object):
|
||||
self.obs = np.zeros((nenv, nh, nw, nc * nstack), dtype=np.uint8)
|
||||
obs = env.reset()
|
||||
self.update_obs(obs)
|
||||
self.nsteps = nsteps
|
||||
self.states = model.initial_state
|
||||
self.dones = [False for _ in range(nenv)]
|
||||
|
||||
def update_obs(self, obs, dones=None):
|
||||
if dones is not None:
|
||||
|
@@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from functools import partial
|
||||
|
||||
from baselines import logger
|
||||
from baselines.acktr.acktr_disc import learn
|
||||
from baselines.common.cmd_util import make_atari_env, atari_arg_parser
|
||||
@@ -8,7 +10,7 @@ from baselines.ppo2.policies import CnnPolicy
|
||||
|
||||
def train(env_id, num_timesteps, seed, num_cpu):
|
||||
env = VecFrameStack(make_atari_env(env_id, num_cpu, seed), 4)
|
||||
policy_fn = CnnPolicy
|
||||
policy_fn = partial(CnnPolicy, one_dim_bias=True)
|
||||
learn(policy_fn, env, seed, total_timesteps=int(num_timesteps * 1.1), nprocs=num_cpu)
|
||||
env.close()
|
||||
|
||||
|
@@ -9,6 +9,8 @@ _atariexpl7 = ['Freeway', 'Gravitar', 'MontezumaRevenge', 'Pitfall', 'PrivateEye
|
||||
_BENCHMARKS = []
|
||||
|
||||
remove_version_re = re.compile(r'-v\d+$')
|
||||
|
||||
|
||||
def register_benchmark(benchmark):
|
||||
for b in _BENCHMARKS:
|
||||
if b['name'] == benchmark['name']:
|
||||
@@ -138,3 +140,11 @@ register_benchmark({
|
||||
'tasks': [{'desc': _game, 'env_id': _game + _ATARI_SUFFIX, 'trials': 2, 'num_timesteps': int(10e6)} for _game in _atari50]
|
||||
})
|
||||
|
||||
# HER DDPG
|
||||
|
||||
register_benchmark({
|
||||
'name': 'HerDdpg',
|
||||
'description': 'Smoke-test only benchmark of HER',
|
||||
'tasks': [{'trials': 1, 'env_id': 'FetchReach-v1'}]
|
||||
})
|
||||
|
||||
|
@@ -1,3 +1,4 @@
|
||||
# flake8: noqa F403
|
||||
from baselines.common.console_util import *
|
||||
from baselines.common.dataset import Dataset
|
||||
from baselines.common.math_util import *
|
||||
|
@@ -98,9 +98,6 @@ class MaxAndSkipEnv(gym.Wrapper):
|
||||
self._obs_buffer = np.zeros((2,)+env.observation_space.shape, dtype=np.uint8)
|
||||
self._skip = skip
|
||||
|
||||
def reset(self):
|
||||
return self.env.reset()
|
||||
|
||||
def step(self, action):
|
||||
"""Repeat action, sum reward, and max over last observations."""
|
||||
total_reward = 0.0
|
||||
|
@@ -3,6 +3,7 @@ Helpers for scripts like run_atari.py.
|
||||
"""
|
||||
|
||||
import os
|
||||
from mpi4py import MPI
|
||||
import gym
|
||||
from gym.wrappers import FlattenDictWrapper
|
||||
from baselines import logger
|
||||
@@ -10,7 +11,6 @@ from baselines.bench import Monitor
|
||||
from baselines.common import set_global_seeds
|
||||
from baselines.common.atari_wrappers import make_atari, wrap_deepmind
|
||||
from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv
|
||||
from mpi4py import MPI
|
||||
|
||||
def make_atari_env(env_id, num_env, seed, wrapper_kwargs=None, start_index=0):
|
||||
"""
|
||||
@@ -31,9 +31,10 @@ def make_mujoco_env(env_id, seed):
|
||||
"""
|
||||
Create a wrapped, monitored gym.Env for MuJoCo.
|
||||
"""
|
||||
set_global_seeds(seed)
|
||||
rank = MPI.COMM_WORLD.Get_rank()
|
||||
set_global_seeds(seed + 10000 * rank)
|
||||
env = gym.make(env_id)
|
||||
env = Monitor(env, logger.get_dir())
|
||||
env = Monitor(env, os.path.join(logger.get_dir(), str(rank)))
|
||||
env.seed(seed)
|
||||
return env
|
||||
|
||||
@@ -75,6 +76,7 @@ def mujoco_arg_parser():
|
||||
parser.add_argument('--env', help='environment ID', type=str, default='Reacher-v2')
|
||||
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
|
||||
parser.add_argument('--num-timesteps', type=int, default=int(1e6))
|
||||
parser.add_argument('--play', default=False, action='store_true')
|
||||
return parser
|
||||
|
||||
def robotics_arg_parser():
|
||||
|
@@ -1,6 +1,7 @@
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
import baselines.common.tf_util as U
|
||||
from baselines.a2c.utils import fc
|
||||
from tensorflow.python.ops import math_ops
|
||||
|
||||
class Pd(object):
|
||||
@@ -31,6 +32,8 @@ class PdType(object):
|
||||
raise NotImplementedError
|
||||
def pdfromflat(self, flat):
|
||||
return self.pdclass()(flat)
|
||||
def pdfromlatent(self, latent_vector):
|
||||
raise NotImplementedError
|
||||
def param_shape(self):
|
||||
raise NotImplementedError
|
||||
def sample_shape(self):
|
||||
@@ -48,6 +51,10 @@ class CategoricalPdType(PdType):
|
||||
self.ncat = ncat
|
||||
def pdclass(self):
|
||||
return CategoricalPd
|
||||
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
|
||||
pdparam = fc(latent_vector, 'pi', self.ncat, init_scale=init_scale, init_bias=init_bias)
|
||||
return self.pdfromflat(pdparam), pdparam
|
||||
|
||||
def param_shape(self):
|
||||
return [self.ncat]
|
||||
def sample_shape(self):
|
||||
@@ -75,6 +82,13 @@ class DiagGaussianPdType(PdType):
|
||||
self.size = size
|
||||
def pdclass(self):
|
||||
return DiagGaussianPd
|
||||
|
||||
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
|
||||
mean = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
|
||||
logstd = tf.get_variable(name='logstd', shape=[1, self.size], initializer=tf.zeros_initializer())
|
||||
pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
|
||||
return self.pdfromflat(pdparam), mean
|
||||
|
||||
def param_shape(self):
|
||||
return [2*self.size]
|
||||
def sample_shape(self):
|
||||
|
30
baselines/common/identity_env.py
Normal file
30
baselines/common/identity_env.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from gym import Env
|
||||
from gym.spaces import Discrete
|
||||
|
||||
|
||||
class IdentityEnv(Env):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
ep_length=100,
|
||||
):
|
||||
|
||||
self.action_space = Discrete(dim)
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self._choose_next_state()
|
||||
self.observation_space = self.action_space
|
||||
|
||||
return self.state
|
||||
|
||||
def step(self, actions):
|
||||
rew = self._get_reward(actions)
|
||||
self._choose_next_state()
|
||||
return self.state, rew, False, {}
|
||||
|
||||
def _choose_next_state(self):
|
||||
self.state = self.action_space.sample()
|
||||
|
||||
def _get_reward(self, actions):
|
||||
return 1 if self.state == actions else 0
|
30
baselines/common/input.py
Normal file
30
baselines/common/input.py
Normal file
@@ -0,0 +1,30 @@
|
||||
import tensorflow as tf
|
||||
from gym.spaces import Discrete, Box
|
||||
|
||||
def observation_input(ob_space, batch_size=None, name='Ob'):
|
||||
'''
|
||||
Build observation input with encoding depending on the
|
||||
observation space type
|
||||
Params:
|
||||
|
||||
ob_space: observation space (should be one of gym.spaces)
|
||||
batch_size: batch size for input (default is None, so that resulting input placeholder can take tensors with any batch size)
|
||||
name: tensorflow variable name for input placeholder
|
||||
|
||||
returns: tuple (input_placeholder, processed_input_tensor)
|
||||
'''
|
||||
if isinstance(ob_space, Discrete):
|
||||
input_x = tf.placeholder(shape=(batch_size,), dtype=tf.int32, name=name)
|
||||
processed_x = tf.to_float(tf.one_hot(input_x, ob_space.n))
|
||||
return input_x, processed_x
|
||||
|
||||
elif isinstance(ob_space, Box):
|
||||
input_shape = (batch_size,) + ob_space.shape
|
||||
input_x = tf.placeholder(shape=input_shape, dtype=ob_space.dtype, name=name)
|
||||
processed_x = tf.to_float(input_x)
|
||||
return input_x, processed_x
|
||||
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
@@ -2,6 +2,7 @@ from mpi4py import MPI
|
||||
import numpy as np
|
||||
from baselines.common import zipsame
|
||||
|
||||
|
||||
def mpi_mean(x, axis=0, comm=None, keepdims=False):
|
||||
x = np.asarray(x)
|
||||
assert x.ndim > 0
|
||||
|
18
baselines/common/runners.py
Normal file
18
baselines/common/runners.py
Normal file
@@ -0,0 +1,18 @@
|
||||
import numpy as np
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
class AbstractEnvRunner(ABC):
|
||||
def __init__(self, *, env, model, nsteps):
|
||||
self.env = env
|
||||
self.model = model
|
||||
nenv = env.num_envs
|
||||
self.batch_ob_shape = (nenv*nsteps,) + env.observation_space.shape
|
||||
self.obs = np.zeros((nenv,) + env.observation_space.shape, dtype=env.observation_space.dtype.name)
|
||||
self.obs[:] = env.reset()
|
||||
self.nsteps = nsteps
|
||||
self.states = model.initial_state
|
||||
self.dones = [False for _ in range(nenv)]
|
||||
|
||||
@abstractmethod
|
||||
def run(self):
|
||||
raise NotImplementedError
|
@@ -12,10 +12,9 @@ class SegmentTree(object):
|
||||
|
||||
a) setting item's value is slightly slower.
|
||||
It is O(lg capacity) instead of O(1).
|
||||
b) user has access to an efficient `reduce`
|
||||
operation which reduces `operation` over
|
||||
a contiguous subsequence of items in the
|
||||
array.
|
||||
b) user has access to an efficient ( O(log segment size) )
|
||||
`reduce` operation which reduces `operation` over
|
||||
a contiguous subsequence of items in the array.
|
||||
|
||||
Paramters
|
||||
---------
|
||||
@@ -23,8 +22,8 @@ class SegmentTree(object):
|
||||
Total size of the array - must be a power of two.
|
||||
operation: lambda obj, obj -> obj
|
||||
and operation for combining elements (eg. sum, max)
|
||||
must for a mathematical group together with the set of
|
||||
possible values for array elements.
|
||||
must form a mathematical group together with the set of
|
||||
possible values for array elements (i.e. be associative)
|
||||
neutral_element: obj
|
||||
neutral element for the operation above. eg. float('-inf')
|
||||
for max and 0 for sum.
|
||||
|
44
baselines/common/test_identity.py
Normal file
44
baselines/common/test_identity.py
Normal file
@@ -0,0 +1,44 @@
|
||||
import pytest
|
||||
import tensorflow as tf
|
||||
import random
|
||||
import numpy as np
|
||||
from gym.spaces import np_random
|
||||
|
||||
from baselines.a2c import a2c
|
||||
from baselines.ppo2 import ppo2
|
||||
from baselines.common.identity_env import IdentityEnv
|
||||
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
|
||||
from baselines.ppo2.policies import MlpPolicy
|
||||
|
||||
|
||||
learn_func_list = [
|
||||
lambda e: a2c.learn(policy=MlpPolicy, env=e, seed=0, total_timesteps=50000),
|
||||
lambda e: ppo2.learn(policy=MlpPolicy, env=e, total_timesteps=50000, lr=1e-3, nsteps=128, ent_coef=0.01)
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize("learn_func", learn_func_list)
|
||||
def test_identity(learn_func):
|
||||
'''
|
||||
Test if the algorithm (with a given policy)
|
||||
can learn an identity transformation (i.e. return observation as an action)
|
||||
'''
|
||||
np.random.seed(0)
|
||||
np_random.seed(0)
|
||||
random.seed(0)
|
||||
|
||||
env = DummyVecEnv([lambda: IdentityEnv(10)])
|
||||
|
||||
with tf.Graph().as_default(), tf.Session().as_default():
|
||||
tf.set_random_seed(0)
|
||||
model = learn_func(env)
|
||||
|
||||
N_TRIALS = 1000
|
||||
sum_rew = 0
|
||||
obs = env.reset()
|
||||
for i in range(N_TRIALS):
|
||||
obs, rew, done, _ = env.step(model.step(obs)[0])
|
||||
sum_rew += rew
|
||||
|
||||
assert sum_rew > 0.9 * N_TRIALS
|
@@ -33,7 +33,6 @@ def test_multikwargs():
|
||||
initialize()
|
||||
assert lin(2) == 6
|
||||
assert lin(2, 2) == 10
|
||||
expt_caught = False
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@@ -48,18 +48,17 @@ def huber_loss(x, delta=1.0):
|
||||
# Global session
|
||||
# ================================================================
|
||||
|
||||
def make_session(num_cpu=None, make_default=False):
|
||||
def make_session(num_cpu=None, make_default=False, graph=None):
|
||||
"""Returns a session that will use <num_cpu> CPU's only"""
|
||||
if num_cpu is None:
|
||||
num_cpu = int(os.getenv('RCALL_NUM_CPU', multiprocessing.cpu_count()))
|
||||
tf_config = tf.ConfigProto(
|
||||
inter_op_parallelism_threads=num_cpu,
|
||||
intra_op_parallelism_threads=num_cpu)
|
||||
tf_config.gpu_options.allocator_type = 'BFC'
|
||||
if make_default:
|
||||
return tf.InteractiveSession(config=tf_config)
|
||||
return tf.InteractiveSession(config=tf_config, graph=graph)
|
||||
else:
|
||||
return tf.Session(config=tf_config)
|
||||
return tf.Session(config=tf_config, graph=graph)
|
||||
|
||||
def single_threaded_session():
|
||||
"""Returns a session which will only use a single CPU"""
|
||||
@@ -84,10 +83,10 @@ def initialize():
|
||||
# Model components
|
||||
# ================================================================
|
||||
|
||||
def normc_initializer(std=1.0):
|
||||
def normc_initializer(std=1.0, axis=0):
|
||||
def _initializer(shape, dtype=None, partition_info=None): # pylint: disable=W0613
|
||||
out = np.random.randn(*shape).astype(np.float32)
|
||||
out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True))
|
||||
out *= std / np.sqrt(np.square(out).sum(axis=axis, keepdims=True))
|
||||
return tf.constant(out)
|
||||
return _initializer
|
||||
|
||||
@@ -273,8 +272,33 @@ def display_var_info(vars):
|
||||
for v in vars:
|
||||
name = v.name
|
||||
if "/Adam" in name or "beta1_power" in name or "beta2_power" in name: continue
|
||||
count_params += np.prod(v.shape.as_list())
|
||||
if "/b:" in name: continue # Wx+b, bias is not interesting to look at => count params, but not print
|
||||
logger.info(" %s%s%s" % (name, " "*(55-len(name)), str(v.shape)))
|
||||
logger.info("Total model parameters: %0.1f million" % (count_params*1e-6))
|
||||
v_params = np.prod(v.shape.as_list())
|
||||
count_params += v_params
|
||||
if "/b:" in name or "/biases" in name: continue # Wx+b, bias is not interesting to look at => count params, but not print
|
||||
logger.info(" %s%s %i params %s" % (name, " "*(55-len(name)), v_params, str(v.shape)))
|
||||
|
||||
logger.info("Total model parameters: %0.2f million" % (count_params*1e-6))
|
||||
|
||||
|
||||
def get_available_gpus():
|
||||
# recipe from here:
|
||||
# https://stackoverflow.com/questions/38559755/how-to-get-current-available-gpus-in-tensorflow?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
|
||||
|
||||
from tensorflow.python.client import device_lib
|
||||
local_device_protos = device_lib.list_local_devices()
|
||||
return [x.name for x in local_device_protos if x.device_type == 'GPU']
|
||||
|
||||
# ================================================================
|
||||
# Saving variables
|
||||
# ================================================================
|
||||
|
||||
def load_state(fname):
|
||||
saver = tf.train.Saver()
|
||||
saver.restore(tf.get_default_session(), fname)
|
||||
|
||||
def save_state(fname):
|
||||
os.makedirs(os.path.dirname(fname), exist_ok=True)
|
||||
saver = tf.train.Saver()
|
||||
saver.save(tf.get_default_session(), fname)
|
||||
|
||||
|
||||
|
23
baselines/common/tile_images.py
Normal file
23
baselines/common/tile_images.py
Normal file
@@ -0,0 +1,23 @@
|
||||
import numpy as np
|
||||
|
||||
def tile_images(img_nhwc):
|
||||
"""
|
||||
Tile N images into one big PxQ image
|
||||
(P,Q) are chosen to be as close as possible, and if N
|
||||
is square, then P=Q.
|
||||
|
||||
input: img_nhwc, list or array of images, ndim=4 once turned into array
|
||||
n = batch index, h = height, w = width, c = channel
|
||||
returns:
|
||||
bigim_HWc, ndarray with ndim=3
|
||||
"""
|
||||
img_nhwc = np.asarray(img_nhwc)
|
||||
N, h, w, c = img_nhwc.shape
|
||||
H = int(np.ceil(np.sqrt(N)))
|
||||
W = int(np.ceil(float(N)/H))
|
||||
img_nhwc = np.array(list(img_nhwc) + [img_nhwc[0]*0 for _ in range(N, H*W)])
|
||||
img_HWhwc = img_nhwc.reshape(H, W, h, w, c)
|
||||
img_HhWwc = img_HWhwc.transpose(0, 2, 1, 3, 4)
|
||||
img_Hh_Ww_c = img_HhWwc.reshape(H*h, W*w, c)
|
||||
return img_Hh_Ww_c
|
||||
|
@@ -77,9 +77,16 @@ class VecEnv(ABC):
|
||||
self.step_async(actions)
|
||||
return self.step_wait()
|
||||
|
||||
def render(self):
|
||||
def render(self, mode='human'):
|
||||
logger.warn('Render not defined for %s'%self)
|
||||
|
||||
@property
|
||||
def unwrapped(self):
|
||||
if isinstance(self, VecEnvWrapper):
|
||||
return self.venv.unwrapped
|
||||
else:
|
||||
return self
|
||||
|
||||
class VecEnvWrapper(VecEnv):
|
||||
def __init__(self, venv, observation_space=None, action_space=None):
|
||||
self.venv = venv
|
||||
|
@@ -1,5 +1,6 @@
|
||||
import numpy as np
|
||||
import gym
|
||||
from gym import spaces
|
||||
from collections import OrderedDict
|
||||
from . import VecEnv
|
||||
|
||||
class DummyVecEnv(VecEnv):
|
||||
@@ -7,9 +8,22 @@ class DummyVecEnv(VecEnv):
|
||||
self.envs = [fn() for fn in env_fns]
|
||||
env = self.envs[0]
|
||||
VecEnv.__init__(self, len(env_fns), env.observation_space, env.action_space)
|
||||
shapes, dtypes = {}, {}
|
||||
self.keys = []
|
||||
obs_space = env.observation_space
|
||||
|
||||
obs_spaces = self.observation_space.spaces if isinstance(self.observation_space, gym.spaces.Tuple) else (self.observation_space,)
|
||||
self.buf_obs = [np.zeros((self.num_envs,) + tuple(s.shape), s.dtype) for s in obs_spaces]
|
||||
if isinstance(obs_space, spaces.Dict):
|
||||
assert isinstance(obs_space.spaces, OrderedDict)
|
||||
subspaces = obs_space.spaces
|
||||
else:
|
||||
subspaces = {None: obs_space}
|
||||
|
||||
for key, box in subspaces.items():
|
||||
shapes[key] = box.shape
|
||||
dtypes[key] = box.dtype
|
||||
self.keys.append(key)
|
||||
|
||||
self.buf_obs = { k: np.zeros((self.num_envs,) + tuple(shapes[k]), dtype=dtypes[k]) for k in self.keys }
|
||||
self.buf_dones = np.zeros((self.num_envs,), dtype=np.bool)
|
||||
self.buf_rews = np.zeros((self.num_envs,), dtype=np.float32)
|
||||
self.buf_infos = [{} for _ in range(self.num_envs)]
|
||||
@@ -19,33 +33,35 @@ class DummyVecEnv(VecEnv):
|
||||
self.actions = actions
|
||||
|
||||
def step_wait(self):
|
||||
for i in range(self.num_envs):
|
||||
obs_tuple, self.buf_rews[i], self.buf_dones[i], self.buf_infos[i] = self.envs[i].step(self.actions[i])
|
||||
if self.buf_dones[i]:
|
||||
obs_tuple = self.envs[i].reset()
|
||||
if isinstance(obs_tuple, (tuple, list)):
|
||||
for t,x in enumerate(obs_tuple):
|
||||
self.buf_obs[t][i] = x
|
||||
else:
|
||||
self.buf_obs[0][i] = obs_tuple
|
||||
for e in range(self.num_envs):
|
||||
obs, self.buf_rews[e], self.buf_dones[e], self.buf_infos[e] = self.envs[e].step(self.actions[e])
|
||||
if self.buf_dones[e]:
|
||||
obs = self.envs[e].reset()
|
||||
self._save_obs(e, obs)
|
||||
return (self._obs_from_buf(), np.copy(self.buf_rews), np.copy(self.buf_dones),
|
||||
self.buf_infos.copy())
|
||||
|
||||
def reset(self):
|
||||
for i in range(self.num_envs):
|
||||
obs_tuple = self.envs[i].reset()
|
||||
if isinstance(obs_tuple, (tuple, list)):
|
||||
for t,x in enumerate(obs_tuple):
|
||||
self.buf_obs[t][i] = x
|
||||
else:
|
||||
self.buf_obs[0][i] = obs_tuple
|
||||
for e in range(self.num_envs):
|
||||
obs = self.envs[e].reset()
|
||||
self._save_obs(e, obs)
|
||||
return self._obs_from_buf()
|
||||
|
||||
def close(self):
|
||||
return
|
||||
|
||||
def render(self, mode='human'):
|
||||
return [e.render(mode=mode) for e in self.envs]
|
||||
|
||||
def _save_obs(self, e, obs):
|
||||
for k in self.keys:
|
||||
if k is None:
|
||||
self.buf_obs[k][e] = obs
|
||||
else:
|
||||
self.buf_obs[k][e] = obs[k]
|
||||
|
||||
def _obs_from_buf(self):
|
||||
if len(self.buf_obs) == 1:
|
||||
return np.copy(self.buf_obs[0])
|
||||
if self.keys==[None]:
|
||||
return self.buf_obs[None]
|
||||
else:
|
||||
return tuple(np.copy(x) for x in self.buf_obs)
|
||||
return self.buf_obs
|
||||
|
@@ -1,6 +1,7 @@
|
||||
import numpy as np
|
||||
from multiprocessing import Process, Pipe
|
||||
from baselines.common.vec_env import VecEnv, CloudpickleWrapper
|
||||
from baselines.common.tile_images import tile_images
|
||||
|
||||
|
||||
def worker(remote, parent_remote, env_fn_wrapper):
|
||||
@@ -16,9 +17,8 @@ def worker(remote, parent_remote, env_fn_wrapper):
|
||||
elif cmd == 'reset':
|
||||
ob = env.reset()
|
||||
remote.send(ob)
|
||||
elif cmd == 'reset_task':
|
||||
ob = env.reset_task()
|
||||
remote.send(ob)
|
||||
elif cmd == 'render':
|
||||
remote.send(env.render(mode='rgb_array'))
|
||||
elif cmd == 'close':
|
||||
remote.close()
|
||||
break
|
||||
@@ -81,3 +81,17 @@ class SubprocVecEnv(VecEnv):
|
||||
for p in self.ps:
|
||||
p.join()
|
||||
self.closed = True
|
||||
|
||||
def render(self, mode='human'):
|
||||
for pipe in self.remotes:
|
||||
pipe.send(('render', None))
|
||||
imgs = [pipe.recv() for pipe in self.remotes]
|
||||
bigimg = tile_images(imgs)
|
||||
if mode == 'human':
|
||||
import cv2
|
||||
cv2.imshow('vecenv', bigimg[:,:,::-1])
|
||||
cv2.waitKey(1)
|
||||
elif mode == 'rgb_array':
|
||||
return bigimg
|
||||
else:
|
||||
raise NotImplementedError
|
@@ -9,7 +9,7 @@ import baselines.common.tf_util as U
|
||||
from baselines import logger
|
||||
from baselines import deepq
|
||||
from baselines.deepq.replay_buffer import ReplayBuffer
|
||||
from baselines.deepq.utils import BatchInput
|
||||
from baselines.deepq.utils import ObservationInput
|
||||
from baselines.common.schedules import LinearSchedule
|
||||
|
||||
|
||||
@@ -28,7 +28,7 @@ if __name__ == '__main__':
|
||||
env = gym.make("CartPole-v0")
|
||||
# Create all the functions necessary to train the model
|
||||
act, train, update_target, debug = deepq.build_train(
|
||||
make_obs_ph=lambda name: BatchInput(env.observation_space.shape, name=name),
|
||||
make_obs_ph=lambda name: ObservationInput(env.observation_space, name=name),
|
||||
q_func=model,
|
||||
num_actions=env.action_space.n,
|
||||
optimizer=tf.train.AdamOptimizer(learning_rate=5e-4),
|
||||
|
@@ -5,13 +5,18 @@ import argparse
|
||||
from baselines import logger
|
||||
from baselines.common.atari_wrappers import make_atari
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--env', help='environment ID', default='BreakoutNoFrameskip-v4')
|
||||
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
|
||||
parser.add_argument('--prioritized', type=int, default=1)
|
||||
parser.add_argument('--prioritized-replay-alpha', type=float, default=0.6)
|
||||
parser.add_argument('--dueling', type=int, default=1)
|
||||
parser.add_argument('--num-timesteps', type=int, default=int(10e6))
|
||||
parser.add_argument('--checkpoint-freq', type=int, default=10000)
|
||||
parser.add_argument('--checkpoint-path', type=str, default=None)
|
||||
|
||||
args = parser.parse_args()
|
||||
logger.configure()
|
||||
set_global_seeds(args.seed)
|
||||
@@ -23,7 +28,8 @@ def main():
|
||||
hiddens=[256],
|
||||
dueling=bool(args.dueling),
|
||||
)
|
||||
act = deepq.learn(
|
||||
|
||||
deepq.learn(
|
||||
env,
|
||||
q_func=model,
|
||||
lr=1e-4,
|
||||
@@ -35,9 +41,12 @@ def main():
|
||||
learning_starts=10000,
|
||||
target_network_update_freq=1000,
|
||||
gamma=0.99,
|
||||
prioritized_replay=bool(args.prioritized)
|
||||
prioritized_replay=bool(args.prioritized),
|
||||
prioritized_replay_alpha=args.prioritized_replay_alpha,
|
||||
checkpoint_freq=args.checkpoint_freq,
|
||||
checkpoint_path=args.checkpoint_path,
|
||||
)
|
||||
# act.save("pong_model.pkl") XXX
|
||||
|
||||
env.close()
|
||||
|
||||
|
||||
|
@@ -86,7 +86,7 @@ class PrioritizedReplayBuffer(ReplayBuffer):
|
||||
ReplayBuffer.__init__
|
||||
"""
|
||||
super(PrioritizedReplayBuffer, self).__init__(size)
|
||||
assert alpha > 0
|
||||
assert alpha >= 0
|
||||
self._alpha = alpha
|
||||
|
||||
it_capacity = 1
|
||||
|
@@ -6,13 +6,15 @@ import zipfile
|
||||
import cloudpickle
|
||||
import numpy as np
|
||||
|
||||
import gym
|
||||
import baselines.common.tf_util as U
|
||||
from baselines.common.tf_util import load_state, save_state
|
||||
from baselines import logger
|
||||
from baselines.common.schedules import LinearSchedule
|
||||
from baselines.common.input import observation_input
|
||||
|
||||
from baselines import deepq
|
||||
from baselines.deepq.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer
|
||||
from baselines.deepq.utils import BatchInput, load_state, save_state
|
||||
from baselines.deepq.utils import ObservationInput
|
||||
|
||||
|
||||
class ActWrapper(object):
|
||||
@@ -88,6 +90,7 @@ def learn(env,
|
||||
batch_size=32,
|
||||
print_freq=100,
|
||||
checkpoint_freq=10000,
|
||||
checkpoint_path=None,
|
||||
learning_starts=1000,
|
||||
gamma=1.0,
|
||||
target_network_update_freq=500,
|
||||
@@ -170,9 +173,9 @@ def learn(env,
|
||||
|
||||
# capture the shape outside the closure so that the env object is not serialized
|
||||
# by cloudpickle when serializing make_obs_ph
|
||||
observation_space_shape = env.observation_space.shape
|
||||
|
||||
def make_obs_ph(name):
|
||||
return BatchInput(observation_space_shape, name=name)
|
||||
return ObservationInput(env.observation_space, name=name)
|
||||
|
||||
act, train, update_target, debug = deepq.build_train(
|
||||
make_obs_ph=make_obs_ph,
|
||||
@@ -216,9 +219,17 @@ def learn(env,
|
||||
saved_mean_reward = None
|
||||
obs = env.reset()
|
||||
reset = True
|
||||
|
||||
with tempfile.TemporaryDirectory() as td:
|
||||
model_saved = False
|
||||
td = checkpoint_path or td
|
||||
|
||||
model_file = os.path.join(td, "model")
|
||||
model_saved = False
|
||||
if tf.train.latest_checkpoint(td) is not None:
|
||||
load_state(model_file)
|
||||
logger.log('Loaded model from {}'.format(model_file))
|
||||
model_saved = True
|
||||
|
||||
for t in range(max_timesteps):
|
||||
if callback is not None:
|
||||
if callback(locals(), globals()):
|
||||
|
43
baselines/deepq/test_identity.py
Normal file
43
baselines/deepq/test_identity.py
Normal file
@@ -0,0 +1,43 @@
|
||||
import tensorflow as tf
|
||||
import random
|
||||
|
||||
from baselines import deepq
|
||||
from baselines.common.identity_env import IdentityEnv
|
||||
|
||||
|
||||
def test_identity():
|
||||
|
||||
with tf.Graph().as_default():
|
||||
env = IdentityEnv(10)
|
||||
random.seed(0)
|
||||
|
||||
tf.set_random_seed(0)
|
||||
|
||||
param_noise = False
|
||||
model = deepq.models.mlp([32])
|
||||
act = deepq.learn(
|
||||
env,
|
||||
q_func=model,
|
||||
lr=1e-3,
|
||||
max_timesteps=10000,
|
||||
buffer_size=50000,
|
||||
exploration_fraction=0.1,
|
||||
exploration_final_eps=0.02,
|
||||
print_freq=10,
|
||||
param_noise=param_noise,
|
||||
)
|
||||
|
||||
tf.set_random_seed(0)
|
||||
|
||||
N_TRIALS = 1000
|
||||
sum_rew = 0
|
||||
obs = env.reset()
|
||||
for i in range(N_TRIALS):
|
||||
obs, rew, done, _ = env.step(act([obs]))
|
||||
sum_rew += rew
|
||||
|
||||
assert sum_rew > 0.9 * N_TRIALS
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_identity()
|
@@ -1,24 +1,12 @@
|
||||
import os
|
||||
from baselines.common.input import observation_input
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
# ================================================================
|
||||
# Saving variables
|
||||
# ================================================================
|
||||
|
||||
def load_state(fname):
|
||||
saver = tf.train.Saver()
|
||||
saver.restore(tf.get_default_session(), fname)
|
||||
|
||||
def save_state(fname):
|
||||
os.makedirs(os.path.dirname(fname), exist_ok=True)
|
||||
saver = tf.train.Saver()
|
||||
saver.save(tf.get_default_session(), fname)
|
||||
|
||||
# ================================================================
|
||||
# Placeholders
|
||||
# ================================================================
|
||||
|
||||
|
||||
class TfInput(object):
|
||||
def __init__(self, name="(unnamed)"):
|
||||
"""Generalized Tensorflow placeholder. The main differences are:
|
||||
@@ -50,20 +38,6 @@ class PlaceholderTfInput(TfInput):
|
||||
def make_feed_dict(self, data):
|
||||
return {self._placeholder: data}
|
||||
|
||||
class BatchInput(PlaceholderTfInput):
|
||||
def __init__(self, shape, dtype=tf.float32, name=None):
|
||||
"""Creates a placeholder for a batch of tensors of a given shape and dtype
|
||||
|
||||
Parameters
|
||||
----------
|
||||
shape: [int]
|
||||
shape of a single elemenet of the batch
|
||||
dtype: tf.dtype
|
||||
number representation used for tensor contents
|
||||
name: str
|
||||
name of the underlying placeholder
|
||||
"""
|
||||
super().__init__(tf.placeholder(dtype, [None] + list(shape), name=name))
|
||||
|
||||
class Uint8Input(PlaceholderTfInput):
|
||||
def __init__(self, shape, name=None):
|
||||
@@ -85,4 +59,25 @@ class Uint8Input(PlaceholderTfInput):
|
||||
self._output = tf.cast(super().get(), tf.float32) / 255.0
|
||||
|
||||
def get(self):
|
||||
return self._output
|
||||
return self._output
|
||||
|
||||
|
||||
class ObservationInput(PlaceholderTfInput):
|
||||
def __init__(self, observation_space, name=None):
|
||||
"""Creates an input placeholder tailored to a specific observation space
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
observation_space:
|
||||
observation space of the environment. Should be one of the gym.spaces types
|
||||
name: str
|
||||
tensorflow name of the underlying placeholder
|
||||
"""
|
||||
inpt, self.processed_inpt = observation_input(observation_space, name=name)
|
||||
super().__init__(inpt)
|
||||
|
||||
def get(self):
|
||||
return self.processed_inpt
|
||||
|
||||
|
||||
|
@@ -47,18 +47,12 @@ class Mujoco_Dset(object):
|
||||
obs = traj_data['obs'][:traj_limitation]
|
||||
acs = traj_data['acs'][:traj_limitation]
|
||||
|
||||
def flatten(x):
|
||||
# x.shape = (E,), or (E, L, D)
|
||||
_, size = x[0].shape
|
||||
episode_length = [len(i) for i in x]
|
||||
y = np.zeros((sum(episode_length), size))
|
||||
start_idx = 0
|
||||
for l, x_i in zip(episode_length, x):
|
||||
y[start_idx:(start_idx+l)] = x_i
|
||||
start_idx += l
|
||||
return y
|
||||
self.obs = np.array(flatten(obs))
|
||||
self.acs = np.array(flatten(acs))
|
||||
# obs, acs: shape (N, L, ) + S where N = # episodes, L = episode length
|
||||
# and S is the environment observation/action space.
|
||||
# Flatten to (N * L, prod(S))
|
||||
self.obs = np.reshape(obs, [-1, np.prod(obs.shape[2:])])
|
||||
self.acs = np.reshape(acs, [-1, np.prod(acs.shape[2:])])
|
||||
|
||||
self.rets = traj_data['ep_rets'][:traj_limitation]
|
||||
self.avg_ret = sum(self.rets)/len(self.rets)
|
||||
self.std_ret = np.std(np.array(self.rets))
|
||||
|
@@ -1,5 +1,5 @@
|
||||
# Hindsight Experience Replay
|
||||
For details on Hindsight Experience Replay (HER), please read the [paper](https://arxiv.org/pdf/1707.01495.pdf).
|
||||
For details on Hindsight Experience Replay (HER), please read the [paper](https://arxiv.org/abs/1707.01495).
|
||||
|
||||
## How to use Hindsight Experience Replay
|
||||
|
||||
@@ -22,14 +22,11 @@ You can try it right now with the results of the training step (the script print
|
||||
This should visualize the current policy for 10 episodes and will also print statistics.
|
||||
|
||||
|
||||
### Advanced usage
|
||||
The train script comes with advanced features like MPI support, that allows to scale across all cores of a single machine.
|
||||
To see all available options, simply run this command:
|
||||
### Reproducing results
|
||||
In order to reproduce the results from [Plappert et al. (2018)](https://arxiv.org/abs/1802.09464), run the following command:
|
||||
```bash
|
||||
python -m baselines.her.experiment.train --help
|
||||
python -m baselines.her.experiment.train --num_cpu 19
|
||||
```
|
||||
To run on, say, 20 CPU cores, you can use the following command:
|
||||
```bash
|
||||
python -m baselines.her.experiment.train --num_cpu 20
|
||||
```
|
||||
That's it, you are now running rollouts using 20 MPI workers and average gradients for network updates across all 20 core.
|
||||
This will require a machine with sufficient amount of physical CPU cores. In our experiments,
|
||||
we used [Azure's D15v2 instances](https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes),
|
||||
which have 20 physical cores. We only scheduled the experiment on 19 of those to leave some head-room on the system.
|
||||
|
@@ -1,7 +1,4 @@
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
import json
|
||||
import os
|
||||
import gym
|
||||
|
||||
from baselines import logger
|
||||
@@ -10,7 +7,7 @@ from baselines.her.her import make_sample_her_transitions
|
||||
|
||||
|
||||
DEFAULT_ENV_PARAMS = {
|
||||
'FetchReach-v0': {
|
||||
'FetchReach-v1': {
|
||||
'n_cycles': 10,
|
||||
},
|
||||
}
|
||||
@@ -51,6 +48,8 @@ DEFAULT_PARAMS = {
|
||||
|
||||
|
||||
CACHED_ENVS = {}
|
||||
|
||||
|
||||
def cached_make_env(make_env):
|
||||
"""
|
||||
Only creates a new environment from the provided function if one has not yet already been
|
||||
@@ -68,6 +67,7 @@ def prepare_params(kwargs):
|
||||
ddpg_params = dict()
|
||||
|
||||
env_name = kwargs['env_name']
|
||||
|
||||
def make_env():
|
||||
return gym.make(env_name)
|
||||
kwargs['make_env'] = make_env
|
||||
@@ -75,7 +75,7 @@ def prepare_params(kwargs):
|
||||
assert hasattr(tmp_env, '_max_episode_steps')
|
||||
kwargs['T'] = tmp_env._max_episode_steps
|
||||
tmp_env.reset()
|
||||
kwargs['max_u'] = np.array(kwargs['max_u']) if type(kwargs['max_u']) == list else kwargs['max_u']
|
||||
kwargs['max_u'] = np.array(kwargs['max_u']) if isinstance(kwargs['max_u'], list) else kwargs['max_u']
|
||||
kwargs['gamma'] = 1. - 1. / kwargs['T']
|
||||
if 'lr' in kwargs:
|
||||
kwargs['pi_lr'] = kwargs['lr']
|
||||
@@ -83,7 +83,7 @@ def prepare_params(kwargs):
|
||||
del kwargs['lr']
|
||||
for name in ['buffer_size', 'hidden', 'layers',
|
||||
'network_class',
|
||||
'polyak',
|
||||
'polyak',
|
||||
'batch_size', 'Q_lr', 'pi_lr',
|
||||
'norm_eps', 'norm_clip', 'max_u',
|
||||
'action_l2', 'clip_obs', 'scope', 'relative_goals']:
|
||||
@@ -103,6 +103,7 @@ def log_params(params, logger=logger):
|
||||
def configure_her(params):
|
||||
env = cached_make_env(params['make_env'])
|
||||
env.reset()
|
||||
|
||||
def reward_fun(ag_2, g, info): # vectorized
|
||||
return env.compute_reward(achieved_goal=ag_2, desired_goal=g, info=info)
|
||||
|
||||
|
@@ -13,6 +13,8 @@ import baselines.her.experiment.config as config
|
||||
from baselines.her.rollout import RolloutWorker
|
||||
from baselines.her.util import mpi_fork
|
||||
|
||||
from subprocess import CalledProcessError
|
||||
|
||||
|
||||
def mpi_average(value):
|
||||
if value == []:
|
||||
@@ -81,12 +83,17 @@ def train(policy, rollout_worker, evaluator,
|
||||
|
||||
|
||||
def launch(
|
||||
env_name, logdir, n_epochs, num_cpu, seed, replay_strategy, policy_save_interval, clip_return,
|
||||
env, logdir, n_epochs, num_cpu, seed, replay_strategy, policy_save_interval, clip_return,
|
||||
override_params={}, save_policies=True
|
||||
):
|
||||
# Fork for multi-CPU MPI implementation.
|
||||
if num_cpu > 1:
|
||||
whoami = mpi_fork(num_cpu)
|
||||
try:
|
||||
whoami = mpi_fork(num_cpu, ['--bind-to', 'core'])
|
||||
except CalledProcessError:
|
||||
# fancy version of mpi call failed, try simple version
|
||||
whoami = mpi_fork(num_cpu)
|
||||
|
||||
if whoami == 'parent':
|
||||
sys.exit(0)
|
||||
import baselines.common.tf_util as U
|
||||
@@ -109,10 +116,10 @@ def launch(
|
||||
|
||||
# Prepare params.
|
||||
params = config.DEFAULT_PARAMS
|
||||
params['env_name'] = env_name
|
||||
params['env_name'] = env
|
||||
params['replay_strategy'] = replay_strategy
|
||||
if env_name in config.DEFAULT_ENV_PARAMS:
|
||||
params.update(config.DEFAULT_ENV_PARAMS[env_name]) # merge env-specific parameters in
|
||||
if env in config.DEFAULT_ENV_PARAMS:
|
||||
params.update(config.DEFAULT_ENV_PARAMS[env]) # merge env-specific parameters in
|
||||
params.update(**override_params) # makes it possible to override any parameter
|
||||
with open(os.path.join(logger.get_dir(), 'params.json'), 'w') as f:
|
||||
json.dump(params, f)
|
||||
@@ -126,7 +133,7 @@ def launch(
|
||||
'You are running HER with just a single MPI worker. This will work, but the ' +
|
||||
'experiments that we report in Plappert et al. (2018, https://arxiv.org/abs/1802.09464) ' +
|
||||
'were obtained with --num_cpu 19. This makes a significant difference and if you ' +
|
||||
'are looking to reproduce those results, be aware of this. Please also refer to ' +
|
||||
'are looking to reproduce those results, be aware of this. Please also refer to ' +
|
||||
'https://github.com/openai/baselines/issues/314 for further details.')
|
||||
logger.warn('****************')
|
||||
logger.warn()
|
||||
@@ -168,7 +175,7 @@ def launch(
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.option('--env_name', type=str, default='FetchReach-v0', help='the name of the OpenAI Gym environment that you want to train on')
|
||||
@click.option('--env', type=str, default='FetchReach-v1', help='the name of the OpenAI Gym environment that you want to train on')
|
||||
@click.option('--logdir', type=str, default=None, help='the path to where logs and policy pickles should go. If not specified, creates a folder in /tmp/')
|
||||
@click.option('--n_epochs', type=int, default=50, help='the number of training epochs to run')
|
||||
@click.option('--num_cpu', type=int, default=1, help='the number of CPU cores to use (using MPI)')
|
||||
|
@@ -58,12 +58,12 @@ def nn(input, layers_sizes, reuse=None, flatten=False, name=""):
|
||||
"""Creates a simple neural network
|
||||
"""
|
||||
for i, size in enumerate(layers_sizes):
|
||||
activation = tf.nn.relu if i < len(layers_sizes)-1 else None
|
||||
activation = tf.nn.relu if i < len(layers_sizes) - 1 else None
|
||||
input = tf.layers.dense(inputs=input,
|
||||
units=size,
|
||||
kernel_initializer=tf.contrib.layers.xavier_initializer(),
|
||||
reuse=reuse,
|
||||
name=name+'_'+str(i))
|
||||
name=name + '_' + str(i))
|
||||
if activation:
|
||||
input = activation(input)
|
||||
if flatten:
|
||||
@@ -85,7 +85,7 @@ def install_mpi_excepthook():
|
||||
sys.excepthook = new_hook
|
||||
|
||||
|
||||
def mpi_fork(n):
|
||||
def mpi_fork(n, extra_mpi_args=[]):
|
||||
"""Re-launches the current script with workers
|
||||
Returns "parent" for original parent, "child" for MPI children
|
||||
"""
|
||||
@@ -99,14 +99,10 @@ def mpi_fork(n):
|
||||
IN_MPI="1"
|
||||
)
|
||||
# "-bind-to core" is crucial for good performance
|
||||
args = [
|
||||
"mpirun",
|
||||
"-np",
|
||||
str(n),
|
||||
"-bind-to",
|
||||
"core",
|
||||
sys.executable
|
||||
]
|
||||
args = ["mpirun", "-np", str(n)] + \
|
||||
extra_mpi_args + \
|
||||
[sys.executable]
|
||||
|
||||
args += sys.argv
|
||||
subprocess.check_call(args, env=env)
|
||||
return "parent"
|
||||
@@ -140,5 +136,5 @@ def reshape_for_broadcasting(source, target):
|
||||
before broadcasting it with MPI.
|
||||
"""
|
||||
dim = len(target.get_shape())
|
||||
shape = ([1] * (dim-1)) + [-1]
|
||||
shape = ([1] * (dim - 1)) + [-1]
|
||||
return tf.reshape(tf.cast(source, target.dtype), shape)
|
||||
|
@@ -8,9 +8,6 @@ import datetime
|
||||
import tempfile
|
||||
from collections import defaultdict
|
||||
|
||||
LOG_OUTPUT_FORMATS = ['stdout', 'log', 'csv']
|
||||
# Also valid: json, tensorboard
|
||||
|
||||
DEBUG = 10
|
||||
INFO = 20
|
||||
WARN = 30
|
||||
@@ -74,8 +71,11 @@ class HumanOutputFormat(KVWriter, SeqWriter):
|
||||
return s[:20] + '...' if len(s) > 23 else s
|
||||
|
||||
def writeseq(self, seq):
|
||||
for arg in seq:
|
||||
self.file.write(arg)
|
||||
seq = list(seq)
|
||||
for (i, elem) in enumerate(seq):
|
||||
self.file.write(elem)
|
||||
if i < len(seq) - 1: # add space unless this is the last one
|
||||
self.file.write(' ')
|
||||
self.file.write('\n')
|
||||
self.file.flush()
|
||||
|
||||
@@ -355,10 +355,19 @@ def configure(dir=None, format_strs=None):
|
||||
assert isinstance(dir, str)
|
||||
os.makedirs(dir, exist_ok=True)
|
||||
|
||||
log_suffix = ''
|
||||
from mpi4py import MPI
|
||||
rank = MPI.COMM_WORLD.Get_rank()
|
||||
if rank > 0:
|
||||
log_suffix = "-rank%03i" % rank
|
||||
|
||||
if format_strs is None:
|
||||
strs = os.getenv('OPENAI_LOG_FORMAT')
|
||||
format_strs = strs.split(',') if strs else LOG_OUTPUT_FORMATS
|
||||
output_formats = [make_output_format(f, dir) for f in format_strs]
|
||||
if rank == 0:
|
||||
format_strs = os.getenv('OPENAI_LOG_FORMAT', 'stdout,log,csv').split(',')
|
||||
else:
|
||||
format_strs = os.getenv('OPENAI_LOG_FORMAT_MPI', 'log').split(',')
|
||||
format_strs = filter(None, format_strs)
|
||||
output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs]
|
||||
|
||||
Logger.CURRENT = Logger(dir=dir, output_formats=output_formats)
|
||||
log('Logging to %s'%dir)
|
||||
|
@@ -5,3 +5,5 @@
|
||||
- `mpirun -np 8 python -m baselines.ppo1.run_atari` runs the algorithm for 40M frames = 10M timesteps on an Atari game. See help (`-h`) for more options.
|
||||
- `python -m baselines.ppo1.run_mujoco` runs the algorithm for 1M frames on a Mujoco environment.
|
||||
|
||||
- Train mujoco 3d humanoid (with optimal-ish hyperparameters): `mpirun -np 16 python -m baselines.ppo1.run_humanoid --model-path=/path/to/model`
|
||||
- Render the 3d humanoid: `python -m baselines.ppo1.run_humanoid --play --model-path=/path/to/model`
|
||||
|
@@ -212,5 +212,7 @@ def learn(env, policy_fn, *,
|
||||
if MPI.COMM_WORLD.Get_rank()==0:
|
||||
logger.dump_tabular()
|
||||
|
||||
return pi
|
||||
|
||||
def flatten_lists(listoflists):
|
||||
return [el for list_ in listoflists for el in list_]
|
||||
|
75
baselines/ppo1/run_humanoid.py
Normal file
75
baselines/ppo1/run_humanoid.py
Normal file
@@ -0,0 +1,75 @@
|
||||
#!/usr/bin/env python3
|
||||
import os
|
||||
from baselines.common.cmd_util import make_mujoco_env, mujoco_arg_parser
|
||||
from baselines.common import tf_util as U
|
||||
from baselines import logger
|
||||
|
||||
import gym
|
||||
|
||||
def train(num_timesteps, seed, model_path=None):
|
||||
env_id = 'Humanoid-v2'
|
||||
from baselines.ppo1 import mlp_policy, pposgd_simple
|
||||
U.make_session(num_cpu=1).__enter__()
|
||||
def policy_fn(name, ob_space, ac_space):
|
||||
return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
|
||||
hid_size=64, num_hid_layers=2)
|
||||
env = make_mujoco_env(env_id, seed)
|
||||
|
||||
# parameters below were the best found in a simple random search
|
||||
# these are good enough to make humanoid walk, but whether those are
|
||||
# an absolute best or not is not certain
|
||||
env = RewScale(env, 0.1)
|
||||
pi = pposgd_simple.learn(env, policy_fn,
|
||||
max_timesteps=num_timesteps,
|
||||
timesteps_per_actorbatch=2048,
|
||||
clip_param=0.2, entcoeff=0.0,
|
||||
optim_epochs=10,
|
||||
optim_stepsize=3e-4,
|
||||
optim_batchsize=64,
|
||||
gamma=0.99,
|
||||
lam=0.95,
|
||||
schedule='linear',
|
||||
)
|
||||
env.close()
|
||||
if model_path:
|
||||
U.save_state(model_path)
|
||||
|
||||
return pi
|
||||
|
||||
class RewScale(gym.RewardWrapper):
|
||||
def __init__(self, env, scale):
|
||||
gym.RewardWrapper.__init__(self, env)
|
||||
self.scale = scale
|
||||
def reward(self, r):
|
||||
return r * self.scale
|
||||
|
||||
def main():
|
||||
logger.configure()
|
||||
parser = mujoco_arg_parser()
|
||||
parser.add_argument('--model-path', default=os.path.join(logger.get_dir(), 'humanoid_policy'))
|
||||
parser.set_defaults(num_timesteps=int(2e7))
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if not args.play:
|
||||
# train the model
|
||||
train(num_timesteps=args.num_timesteps, seed=args.seed, model_path=args.model_path)
|
||||
else:
|
||||
# construct the model object, load pre-trained model and render
|
||||
pi = train(num_timesteps=1, seed=args.seed)
|
||||
U.load_state(args.model_path)
|
||||
env = make_mujoco_env('Humanoid-v2', seed=0)
|
||||
|
||||
ob = env.reset()
|
||||
while True:
|
||||
action = pi.act(stochastic=False, ob=ob)[0]
|
||||
ob, _, done, _ = env.step(action)
|
||||
env.render()
|
||||
if done:
|
||||
ob = env.reset()
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
40
baselines/ppo1/run_robotics.py
Normal file
40
baselines/ppo1/run_robotics.py
Normal file
@@ -0,0 +1,40 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from mpi4py import MPI
|
||||
from baselines.common import set_global_seeds
|
||||
from baselines import logger
|
||||
from baselines.common.cmd_util import make_robotics_env, robotics_arg_parser
|
||||
import mujoco_py
|
||||
|
||||
|
||||
def train(env_id, num_timesteps, seed):
|
||||
from baselines.ppo1 import mlp_policy, pposgd_simple
|
||||
import baselines.common.tf_util as U
|
||||
rank = MPI.COMM_WORLD.Get_rank()
|
||||
sess = U.single_threaded_session()
|
||||
sess.__enter__()
|
||||
mujoco_py.ignore_mujoco_warnings().__enter__()
|
||||
workerseed = seed + 10000 * rank
|
||||
set_global_seeds(workerseed)
|
||||
env = make_robotics_env(env_id, workerseed, rank=rank)
|
||||
def policy_fn(name, ob_space, ac_space):
|
||||
return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
|
||||
hid_size=256, num_hid_layers=3)
|
||||
|
||||
pposgd_simple.learn(env, policy_fn,
|
||||
max_timesteps=num_timesteps,
|
||||
timesteps_per_actorbatch=2048,
|
||||
clip_param=0.2, entcoeff=0.0,
|
||||
optim_epochs=5, optim_stepsize=3e-4, optim_batchsize=256,
|
||||
gamma=0.99, lam=0.95, schedule='linear',
|
||||
)
|
||||
env.close()
|
||||
|
||||
|
||||
def main():
|
||||
args = robotics_arg_parser().parse_args()
|
||||
train(args.env, num_timesteps=args.num_timesteps, seed=args.seed)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@@ -2,39 +2,36 @@ import numpy as np
|
||||
import tensorflow as tf
|
||||
from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch, lstm, lnlstm
|
||||
from baselines.common.distributions import make_pdtype
|
||||
from baselines.common.input import observation_input
|
||||
|
||||
def nature_cnn(unscaled_images):
|
||||
def nature_cnn(unscaled_images, **conv_kwargs):
|
||||
"""
|
||||
CNN from Nature paper.
|
||||
"""
|
||||
scaled_images = tf.cast(unscaled_images, tf.float32) / 255.
|
||||
activ = tf.nn.relu
|
||||
h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2)))
|
||||
h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2)))
|
||||
h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2)))
|
||||
h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2),
|
||||
**conv_kwargs))
|
||||
h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs))
|
||||
h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs))
|
||||
h3 = conv_to_fc(h3)
|
||||
return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
|
||||
|
||||
class LnLstmPolicy(object):
|
||||
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
|
||||
nenv = nbatch // nsteps
|
||||
nh, nw, nc = ob_space.shape
|
||||
ob_shape = (nbatch, nh, nw, nc)
|
||||
nact = ac_space.n
|
||||
X = tf.placeholder(tf.uint8, ob_shape) #obs
|
||||
X, processed_x = observation_input(ob_space, nbatch)
|
||||
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
|
||||
S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
|
||||
self.pdtype = make_pdtype(ac_space)
|
||||
with tf.variable_scope("model", reuse=reuse):
|
||||
h = nature_cnn(X)
|
||||
h = nature_cnn(processed_x)
|
||||
xs = batch_to_seq(h, nenv, nsteps)
|
||||
ms = batch_to_seq(M, nenv, nsteps)
|
||||
h5, snew = lnlstm(xs, ms, S, 'lstm1', nh=nlstm)
|
||||
h5 = seq_to_batch(h5)
|
||||
pi = fc(h5, 'pi', nact)
|
||||
vf = fc(h5, 'v', 1)
|
||||
|
||||
self.pdtype = make_pdtype(ac_space)
|
||||
self.pd = self.pdtype.pdfromflat(pi)
|
||||
self.pd, self.pi = self.pdtype.pdfromlatent(h5)
|
||||
|
||||
v0 = vf[:, 0]
|
||||
a0 = self.pd.sample()
|
||||
@@ -50,7 +47,6 @@ class LnLstmPolicy(object):
|
||||
self.X = X
|
||||
self.M = M
|
||||
self.S = S
|
||||
self.pi = pi
|
||||
self.vf = vf
|
||||
self.step = step
|
||||
self.value = value
|
||||
@@ -59,11 +55,9 @@ class LstmPolicy(object):
|
||||
|
||||
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
|
||||
nenv = nbatch // nsteps
|
||||
self.pdtype = make_pdtype(ac_space)
|
||||
X, processed_x = observation_input(ob_space, nbatch)
|
||||
|
||||
nh, nw, nc = ob_space.shape
|
||||
ob_shape = (nbatch, nh, nw, nc)
|
||||
nact = ac_space.n
|
||||
X = tf.placeholder(tf.uint8, ob_shape) #obs
|
||||
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
|
||||
S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
|
||||
with tf.variable_scope("model", reuse=reuse):
|
||||
@@ -72,11 +66,8 @@ class LstmPolicy(object):
|
||||
ms = batch_to_seq(M, nenv, nsteps)
|
||||
h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm)
|
||||
h5 = seq_to_batch(h5)
|
||||
pi = fc(h5, 'pi', nact)
|
||||
vf = fc(h5, 'v', 1)
|
||||
|
||||
self.pdtype = make_pdtype(ac_space)
|
||||
self.pd = self.pdtype.pdfromflat(pi)
|
||||
self.pd, self.pi = self.pdtype.pdfromlatent(h5)
|
||||
|
||||
v0 = vf[:, 0]
|
||||
a0 = self.pd.sample()
|
||||
@@ -92,25 +83,19 @@ class LstmPolicy(object):
|
||||
self.X = X
|
||||
self.M = M
|
||||
self.S = S
|
||||
self.pi = pi
|
||||
self.vf = vf
|
||||
self.step = step
|
||||
self.value = value
|
||||
|
||||
class CnnPolicy(object):
|
||||
|
||||
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False): #pylint: disable=W0613
|
||||
nh, nw, nc = ob_space.shape
|
||||
ob_shape = (nbatch, nh, nw, nc)
|
||||
nact = ac_space.n
|
||||
X = tf.placeholder(tf.uint8, ob_shape) #obs
|
||||
with tf.variable_scope("model", reuse=reuse):
|
||||
h = nature_cnn(X)
|
||||
pi = fc(h, 'pi', nact, init_scale=0.01)
|
||||
vf = fc(h, 'v', 1)[:,0]
|
||||
|
||||
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False, **conv_kwargs): #pylint: disable=W0613
|
||||
self.pdtype = make_pdtype(ac_space)
|
||||
self.pd = self.pdtype.pdfromflat(pi)
|
||||
X, processed_x = observation_input(ob_space, nbatch)
|
||||
with tf.variable_scope("model", reuse=reuse):
|
||||
h = nature_cnn(processed_x, **conv_kwargs)
|
||||
vf = fc(h, 'v', 1)[:,0]
|
||||
self.pd, self.pi = self.pdtype.pdfromlatent(h, init_scale=0.01)
|
||||
|
||||
a0 = self.pd.sample()
|
||||
neglogp0 = self.pd.neglogp(a0)
|
||||
@@ -124,31 +109,25 @@ class CnnPolicy(object):
|
||||
return sess.run(vf, {X:ob})
|
||||
|
||||
self.X = X
|
||||
self.pi = pi
|
||||
self.vf = vf
|
||||
self.step = step
|
||||
self.value = value
|
||||
|
||||
class MlpPolicy(object):
|
||||
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False): #pylint: disable=W0613
|
||||
ob_shape = (nbatch,) + ob_space.shape
|
||||
actdim = ac_space.shape[0]
|
||||
X = tf.placeholder(tf.float32, ob_shape, name='Ob') #obs
|
||||
with tf.variable_scope("model", reuse=reuse):
|
||||
activ = tf.tanh
|
||||
h1 = activ(fc(X, 'pi_fc1', nh=64, init_scale=np.sqrt(2)))
|
||||
h2 = activ(fc(h1, 'pi_fc2', nh=64, init_scale=np.sqrt(2)))
|
||||
pi = fc(h2, 'pi', actdim, init_scale=0.01)
|
||||
h1 = activ(fc(X, 'vf_fc1', nh=64, init_scale=np.sqrt(2)))
|
||||
h2 = activ(fc(h1, 'vf_fc2', nh=64, init_scale=np.sqrt(2)))
|
||||
vf = fc(h2, 'vf', 1)[:,0]
|
||||
logstd = tf.get_variable(name="logstd", shape=[1, actdim],
|
||||
initializer=tf.zeros_initializer())
|
||||
|
||||
pdparam = tf.concat([pi, pi * 0.0 + logstd], axis=1)
|
||||
|
||||
self.pdtype = make_pdtype(ac_space)
|
||||
self.pd = self.pdtype.pdfromflat(pdparam)
|
||||
with tf.variable_scope("model", reuse=reuse):
|
||||
X, processed_x = observation_input(ob_space, nbatch)
|
||||
activ = tf.tanh
|
||||
processed_x = tf.layers.flatten(processed_x)
|
||||
pi_h1 = activ(fc(processed_x, 'pi_fc1', nh=64, init_scale=np.sqrt(2)))
|
||||
pi_h2 = activ(fc(pi_h1, 'pi_fc2', nh=64, init_scale=np.sqrt(2)))
|
||||
vf_h1 = activ(fc(processed_x, 'vf_fc1', nh=64, init_scale=np.sqrt(2)))
|
||||
vf_h2 = activ(fc(vf_h1, 'vf_fc2', nh=64, init_scale=np.sqrt(2)))
|
||||
vf = fc(vf_h2, 'vf', 1)[:,0]
|
||||
|
||||
self.pd, self.pi = self.pdtype.pdfromlatent(pi_h2, init_scale=0.01)
|
||||
|
||||
|
||||
a0 = self.pd.sample()
|
||||
neglogp0 = self.pd.neglogp(a0)
|
||||
@@ -162,7 +141,6 @@ class MlpPolicy(object):
|
||||
return sess.run(vf, {X:ob})
|
||||
|
||||
self.X = X
|
||||
self.pi = pi
|
||||
self.vf = vf
|
||||
self.step = step
|
||||
self.value = value
|
||||
|
@@ -7,6 +7,7 @@ import tensorflow as tf
|
||||
from baselines import logger
|
||||
from collections import deque
|
||||
from baselines.common import explained_variance
|
||||
from baselines.common.runners import AbstractEnvRunner
|
||||
|
||||
class Model(object):
|
||||
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
|
||||
@@ -84,19 +85,12 @@ class Model(object):
|
||||
self.load = load
|
||||
tf.global_variables_initializer().run(session=sess) #pylint: disable=E1101
|
||||
|
||||
class Runner(object):
|
||||
class Runner(AbstractEnvRunner):
|
||||
|
||||
def __init__(self, *, env, model, nsteps, gamma, lam):
|
||||
self.env = env
|
||||
self.model = model
|
||||
nenv = env.num_envs
|
||||
self.obs = np.zeros((nenv,) + env.observation_space.shape, dtype=model.train_model.X.dtype.name)
|
||||
self.obs[:] = env.reset()
|
||||
self.gamma = gamma
|
||||
super().__init__(env=env, model=model, nsteps=nsteps)
|
||||
self.lam = lam
|
||||
self.nsteps = nsteps
|
||||
self.states = model.initial_state
|
||||
self.dones = [False for _ in range(nenv)]
|
||||
self.gamma = gamma
|
||||
|
||||
def run(self):
|
||||
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs = [],[],[],[],[],[]
|
||||
@@ -154,7 +148,7 @@ def constfn(val):
|
||||
def learn(*, policy, env, nsteps, total_timesteps, ent_coef, lr,
|
||||
vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95,
|
||||
log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2,
|
||||
save_interval=0):
|
||||
save_interval=0, load_path=None):
|
||||
|
||||
if isinstance(lr, float): lr = constfn(lr)
|
||||
else: assert callable(lr)
|
||||
@@ -176,6 +170,8 @@ def learn(*, policy, env, nsteps, total_timesteps, ent_coef, lr,
|
||||
with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh:
|
||||
fh.write(cloudpickle.dumps(make_model))
|
||||
model = make_model()
|
||||
if load_path is not None:
|
||||
model.load(load_path)
|
||||
runner = Runner(env=env, model=model, nsteps=nsteps, gamma=gamma, lam=lam)
|
||||
|
||||
epinfobuf = deque(maxlen=100)
|
||||
@@ -240,6 +236,7 @@ def learn(*, policy, env, nsteps, total_timesteps, ent_coef, lr,
|
||||
print('Saving to', savepath)
|
||||
model.save(savepath)
|
||||
env.close()
|
||||
return model
|
||||
|
||||
def safemean(xs):
|
||||
return np.nan if len(xs) == 0 else np.mean(xs)
|
||||
|
@@ -4,7 +4,7 @@ from baselines import logger
|
||||
from baselines.common.cmd_util import make_atari_env, atari_arg_parser
|
||||
from baselines.common.vec_env.vec_frame_stack import VecFrameStack
|
||||
from baselines.ppo2 import ppo2
|
||||
from baselines.ppo2.policies import CnnPolicy, LstmPolicy, LnLstmPolicy
|
||||
from baselines.ppo2.policies import CnnPolicy, LstmPolicy, LnLstmPolicy, MlpPolicy
|
||||
import multiprocessing
|
||||
import tensorflow as tf
|
||||
|
||||
@@ -20,7 +20,7 @@ def train(env_id, num_timesteps, seed, policy):
|
||||
tf.Session(config=config).__enter__()
|
||||
|
||||
env = VecFrameStack(make_atari_env(env_id, 8, seed), 4)
|
||||
policy = {'cnn' : CnnPolicy, 'lstm' : LstmPolicy, 'lnlstm' : LnLstmPolicy}[policy]
|
||||
policy = {'cnn' : CnnPolicy, 'lstm' : LstmPolicy, 'lnlstm' : LnLstmPolicy, 'mlp': MlpPolicy}[policy]
|
||||
ppo2.learn(policy=policy, env=env, nsteps=128, nminibatches=4,
|
||||
lam=0.95, gamma=0.99, noptepochs=4, log_interval=1,
|
||||
ent_coef=.01,
|
||||
@@ -30,7 +30,7 @@ def train(env_id, num_timesteps, seed, policy):
|
||||
|
||||
def main():
|
||||
parser = atari_arg_parser()
|
||||
parser.add_argument('--policy', help='Policy architecture', choices=['cnn', 'lstm', 'lnlstm'], default='cnn')
|
||||
parser.add_argument('--policy', help='Policy architecture', choices=['cnn', 'lstm', 'lnlstm', 'mlp'], default='cnn')
|
||||
args = parser.parse_args()
|
||||
logger.configure()
|
||||
train(args.env, num_timesteps=args.num_timesteps, seed=args.seed,
|
||||
|
@@ -1,8 +1,9 @@
|
||||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
import numpy as np
|
||||
from baselines.common.cmd_util import mujoco_arg_parser
|
||||
from baselines import bench, logger
|
||||
|
||||
|
||||
def train(env_id, num_timesteps, seed):
|
||||
from baselines.common import set_global_seeds
|
||||
from baselines.common.vec_env.vec_normalize import VecNormalize
|
||||
@@ -16,27 +17,40 @@ def train(env_id, num_timesteps, seed):
|
||||
intra_op_parallelism_threads=ncpu,
|
||||
inter_op_parallelism_threads=ncpu)
|
||||
tf.Session(config=config).__enter__()
|
||||
|
||||
def make_env():
|
||||
env = gym.make(env_id)
|
||||
env = bench.Monitor(env, logger.get_dir())
|
||||
env = bench.Monitor(env, logger.get_dir(), allow_early_resets=True)
|
||||
return env
|
||||
|
||||
env = DummyVecEnv([make_env])
|
||||
env = VecNormalize(env)
|
||||
|
||||
set_global_seeds(seed)
|
||||
policy = MlpPolicy
|
||||
ppo2.learn(policy=policy, env=env, nsteps=2048, nminibatches=32,
|
||||
lam=0.95, gamma=0.99, noptepochs=10, log_interval=1,
|
||||
ent_coef=0.0,
|
||||
lr=3e-4,
|
||||
cliprange=0.2,
|
||||
total_timesteps=num_timesteps)
|
||||
model = ppo2.learn(policy=policy, env=env, nsteps=2048, nminibatches=32,
|
||||
lam=0.95, gamma=0.99, noptepochs=10, log_interval=1,
|
||||
ent_coef=0.0,
|
||||
lr=3e-4,
|
||||
cliprange=0.2,
|
||||
total_timesteps=num_timesteps)
|
||||
|
||||
return model, env
|
||||
|
||||
|
||||
def main():
|
||||
args = mujoco_arg_parser().parse_args()
|
||||
logger.configure()
|
||||
train(args.env, num_timesteps=args.num_timesteps, seed=args.seed)
|
||||
model, env = train(args.env, num_timesteps=args.num_timesteps, seed=args.seed)
|
||||
|
||||
if args.play:
|
||||
logger.log("Running trained model")
|
||||
obs = np.zeros((env.num_envs,) + env.observation_space.shape)
|
||||
obs[:] = env.reset()
|
||||
while True:
|
||||
actions = model.step(obs)[0]
|
||||
obs[:] = env.step(actions)[0]
|
||||
env.render()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
Reference in New Issue
Block a user