Compare commits
2 Commits
peterz_cod
...
peterz_tfl
Author | SHA1 | Date | |
---|---|---|---|
|
b650cd862e | ||
|
217b111c88 |
@@ -1 +1 @@
|
||||
|
||||
ppo2
|
||||
|
1
.gitignore
vendored
1
.gitignore
vendored
@@ -5,7 +5,6 @@
|
||||
.pytest_cache
|
||||
.DS_Store
|
||||
.idea
|
||||
.coverage
|
||||
|
||||
# Setuptools distribution and build folders.
|
||||
/dist/
|
||||
|
@@ -139,4 +139,3 @@ To cite this repository in publications:
|
||||
journal = {GitHub repository},
|
||||
howpublished = {\url{https://github.com/openai/baselines}},
|
||||
}
|
||||
|
||||
|
@@ -156,7 +156,7 @@ class FrameStack(gym.Wrapper):
|
||||
self.k = k
|
||||
self.frames = deque([], maxlen=k)
|
||||
shp = env.observation_space.shape
|
||||
self.observation_space = spaces.Box(low=0, high=255, shape=(shp[0], shp[1], shp[2] * k), dtype=env.observation_space.dtype)
|
||||
self.observation_space = spaces.Box(low=0, high=255, shape=(shp[0], shp[1], shp[2] * k), dtype=np.uint8)
|
||||
|
||||
def reset(self):
|
||||
ob = self.env.reset()
|
||||
@@ -176,7 +176,6 @@ class FrameStack(gym.Wrapper):
|
||||
class ScaledFloatFrame(gym.ObservationWrapper):
|
||||
def __init__(self, env):
|
||||
gym.ObservationWrapper.__init__(self, env)
|
||||
self.observation_space = gym.spaces.Box(low=0, high=1, shape=env.observation_space.shape, dtype=np.float32)
|
||||
|
||||
def observation(self, observation):
|
||||
# careful! This undoes the memory optimization, use
|
||||
|
@@ -92,6 +92,48 @@ def lstm(nlstm=128, layer_norm=False):
|
||||
|
||||
return network_fn
|
||||
|
||||
def tflstm_static(nlstm=128, layer_norm=False):
|
||||
def network_fn(X, nenv=1):
|
||||
nbatch = X.shape[0]
|
||||
nsteps = nbatch // nenv
|
||||
|
||||
h = tf.layers.flatten(X)
|
||||
rnn_cell = tf.nn.rnn_cell.BasicLSTMCell(nlstm, state_is_tuple=False, forget_bias=0.0)
|
||||
|
||||
S = tf.placeholder(tf.float32, rnn_cell.zero_state(nenv, dtype=tf.float32).shape) #states
|
||||
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
|
||||
|
||||
xs = batch_to_seq(h, nenv, nsteps)
|
||||
|
||||
h5, snew = tf.nn.static_rnn(rnn_cell, xs, initial_state=S)
|
||||
|
||||
h = seq_to_batch(h5)
|
||||
|
||||
initial_state = np.zeros(S.shape.as_list(), dtype=float)
|
||||
|
||||
return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state}
|
||||
|
||||
return network_fn
|
||||
|
||||
def tflstm(nlstm=128):
|
||||
def network_fn(X, nenv=1):
|
||||
nbatch = X.shape[0]
|
||||
nsteps = nbatch // nenv
|
||||
|
||||
h = tf.layers.flatten(X)
|
||||
rnn_cell = tf.nn.rnn_cell.BasicLSTMCell(nlstm, state_is_tuple=False, forget_bias=0.0)
|
||||
|
||||
S = tf.placeholder(tf.float32, rnn_cell.zero_state(nenv, dtype=tf.float32).shape) #states
|
||||
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
|
||||
initial_state = np.zeros(S.shape)
|
||||
|
||||
h = tf.reshape(h, (-1, nsteps, h.shape[-1]))
|
||||
h, snew = tf.nn.dynamic_rnn(rnn_cell, h, initial_state=S)
|
||||
|
||||
h = tf.reshape(h, (-1, h.shape[-1]))
|
||||
return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state}
|
||||
|
||||
return network_fn
|
||||
|
||||
def cnn_lstm(nlstm=128, layer_norm=False, **conv_kwargs):
|
||||
def network_fn(X, nenv=1):
|
||||
@@ -138,7 +180,7 @@ def conv_only(convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], **conv_kwargs):
|
||||
'''
|
||||
|
||||
def network_fn(X):
|
||||
out = tf.cast(X, tf.float32) / 255.
|
||||
out = X
|
||||
with tf.variable_scope("convnet"):
|
||||
for num_outputs, kernel_size, stride in convs:
|
||||
out = layers.convolution2d(out,
|
||||
@@ -169,6 +211,10 @@ def get_network_builder(name):
|
||||
return mlp
|
||||
elif name == 'lstm':
|
||||
return lstm
|
||||
elif name == 'tflstm_static':
|
||||
return tflstm_static
|
||||
elif name == 'tflstm':
|
||||
return tflstm
|
||||
elif name == 'cnn_lstm':
|
||||
return cnn_lstm
|
||||
elif name == 'cnn_lnlstm':
|
||||
|
@@ -6,7 +6,8 @@ from baselines.run import get_learn_function
|
||||
|
||||
common_kwargs = dict(
|
||||
seed=0,
|
||||
total_timesteps=50000,
|
||||
total_timesteps=20000,
|
||||
nlstm=64
|
||||
)
|
||||
|
||||
learn_kwargs = {
|
||||
@@ -19,7 +20,7 @@ learn_kwargs = {
|
||||
|
||||
|
||||
alg_list = learn_kwargs.keys()
|
||||
rnn_list = ['lstm']
|
||||
rnn_list = ['lstm', 'tflstm', 'tflstm_static']
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize("alg", alg_list)
|
||||
@@ -41,11 +42,11 @@ def test_fixed_sequence(alg, rnn):
|
||||
**kwargs
|
||||
)
|
||||
|
||||
simple_test(env_fn, learn, 0.7)
|
||||
simple_test(env_fn, learn, 0.3)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_fixed_sequence('ppo2', 'lstm')
|
||||
test_fixed_sequence('ppo2', 'tflstm')
|
||||
|
||||
|
||||
|
||||
|
@@ -2,6 +2,7 @@ import tensorflow as tf
|
||||
import numpy as np
|
||||
from gym.spaces import np_random
|
||||
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
|
||||
from baselines.bench.monitor import Monitor
|
||||
|
||||
N_TRIALS = 10000
|
||||
N_EPISODES = 100
|
||||
@@ -10,7 +11,7 @@ def simple_test(env_fn, learn_fn, min_reward_fraction, n_trials=N_TRIALS):
|
||||
np.random.seed(0)
|
||||
np_random.seed(0)
|
||||
|
||||
env = DummyVecEnv([env_fn])
|
||||
env = DummyVecEnv([lambda: Monitor(env_fn(), None, allow_early_resets=True)])
|
||||
|
||||
|
||||
with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(allow_soft_placement=True)).as_default():
|
||||
|
Reference in New Issue
Block a user