Compare commits
23 Commits
peterz_mpi
...
peterz_viz
Author | SHA1 | Date | |
---|---|---|---|
|
6b41b6b984 | ||
|
9705773eab | ||
|
7bb405c7a7 | ||
|
8b95576a92 | ||
|
db9563ebf6 | ||
|
b8bc0f8791 | ||
|
9d4fb76ef0 | ||
|
664ec6faf0 | ||
|
3917321fbe | ||
|
6e607efa90 | ||
|
c74ce02b9d | ||
|
fa199534c5 | ||
|
09b42f8c26 | ||
|
06421877bf | ||
|
527acf123f | ||
|
1fc5e137b2 | ||
|
ab59de6922 | ||
|
a071fa7630 | ||
|
637bf55da7 | ||
|
165c622572 | ||
|
6c194a8b15 | ||
|
0d0701f594 | ||
|
be433fdb83 |
@@ -11,4 +11,4 @@ install:
|
||||
|
||||
script:
|
||||
- flake8 . --show-source --statistics
|
||||
- docker run baselines-test pytest -v .
|
||||
- docker run baselines-test pytest -v --forked .
|
||||
|
15
Dockerfile
15
Dockerfile
@@ -1,16 +1,9 @@
|
||||
FROM ubuntu:16.04
|
||||
FROM python:3.6
|
||||
|
||||
RUN apt-get -y update && apt-get -y install ffmpeg
|
||||
# RUN apt-get -y update && apt-get -y install git wget python-dev python3-dev libopenmpi-dev python-pip zlib1g-dev cmake python-opencv
|
||||
|
||||
RUN apt-get -y update && apt-get -y install git wget python-dev python3-dev libopenmpi-dev python-pip zlib1g-dev cmake python-opencv
|
||||
ENV CODE_DIR /root/code
|
||||
ENV VENV /root/venv
|
||||
|
||||
RUN \
|
||||
pip install virtualenv && \
|
||||
virtualenv $VENV --python=python3 && \
|
||||
. $VENV/bin/activate && \
|
||||
pip install --upgrade pip
|
||||
|
||||
ENV PATH=$VENV/bin:$PATH
|
||||
|
||||
COPY . $CODE_DIR/baselines
|
||||
WORKDIR $CODE_DIR/baselines
|
||||
|
12
README.md
12
README.md
@@ -109,17 +109,9 @@ python -m baselines.run --alg=ppo2 --env=PongNoFrameskip-v4 --num_timesteps=0 --
|
||||
|
||||
*NOTE:* At the moment Mujoco training uses VecNormalize wrapper for the environment which is not being saved correctly; so loading the models trained on Mujoco will not work well if the environment is recreated. If necessary, you can work around that by replacing RunningMeanStd by TfRunningMeanStd in [baselines/common/vec_env/vec_normalize.py](baselines/common/vec_env/vec_normalize.py#L12). This way, mean and std of environment normalizing wrapper will be saved in tensorflow variables and included in the model file; however, training is slower that way - hence not including it by default
|
||||
|
||||
## Loading and vizualizing learning curves and other training metrics
|
||||
See [here](docs/viz/viz.ipynb) for instructions on how to load and display the training data.
|
||||
|
||||
## Using baselines with TensorBoard
|
||||
Baselines logger can save data in the TensorBoard format. To do so, set environment variables `OPENAI_LOG_FORMAT` and `OPENAI_LOGDIR`:
|
||||
```bash
|
||||
export OPENAI_LOG_FORMAT='stdout,log,csv,tensorboard' # formats are comma-separated, but for tensorboard you only really need the last one
|
||||
export OPENAI_LOGDIR=path/to/tensorboard/data
|
||||
```
|
||||
And you can now start TensorBoard with:
|
||||
```bash
|
||||
tensorboard --logdir=$OPENAI_LOGDIR
|
||||
```
|
||||
## Subpackages
|
||||
|
||||
- [A2C](baselines/a2c)
|
||||
|
@@ -60,12 +60,14 @@ def make_env(env_id, env_type, subrank=0, seed=None, reward_scale=1.0, gamestate
|
||||
allow_early_resets=True)
|
||||
|
||||
if env_type == 'atari':
|
||||
return wrap_deepmind(env, **wrapper_kwargs)
|
||||
elif reward_scale != 1:
|
||||
return retro_wrappers.RewardScaler(env, reward_scale)
|
||||
else:
|
||||
return env
|
||||
env = wrap_deepmind(env, **wrapper_kwargs)
|
||||
elif env_type == 'retro':
|
||||
env = retro_wrappers.wrap_deepmind_retro(env, **wrapper_kwargs)
|
||||
|
||||
if reward_scale != 1:
|
||||
env = retro_wrappers.RewardScaler(env, reward_scale)
|
||||
|
||||
return env
|
||||
|
||||
|
||||
def make_mujoco_env(env_id, seed, reward_scale=1.0):
|
||||
@@ -129,6 +131,8 @@ def common_arg_parser():
|
||||
parser.add_argument('--num_env', help='Number of environment copies being run in parallel. When not specified, set to number of cpus for Atari, and to 1 for Mujoco', default=None, type=int)
|
||||
parser.add_argument('--reward_scale', help='Reward scale factor. Default: 1.0', default=1.0, type=float)
|
||||
parser.add_argument('--save_path', help='Path to save trained model to', default=None, type=str)
|
||||
parser.add_argument('--save_video_interval', help='Save video every x steps (0 = disabled)', default=0, type=int)
|
||||
parser.add_argument('--save_video_length', help='Length of recorded video. Default: 200', default=200, type=int)
|
||||
parser.add_argument('--play', default=False, action='store_true')
|
||||
return parser
|
||||
|
||||
|
@@ -1,7 +1,11 @@
|
||||
from mpi4py import MPI
|
||||
import baselines.common.tf_util as U
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
try:
|
||||
from mpi4py import MPI
|
||||
except ImportError:
|
||||
MPI = None
|
||||
|
||||
|
||||
class MpiAdam(object):
|
||||
def __init__(self, var_list, *, beta1=0.9, beta2=0.999, epsilon=1e-08, scale_grad_by_procs=True, comm=None):
|
||||
@@ -16,16 +20,19 @@ class MpiAdam(object):
|
||||
self.t = 0
|
||||
self.setfromflat = U.SetFromFlat(var_list)
|
||||
self.getflat = U.GetFlat(var_list)
|
||||
self.comm = MPI.COMM_WORLD if comm is None else comm
|
||||
self.comm = MPI.COMM_WORLD if comm is None and MPI is not None else comm
|
||||
|
||||
def update(self, localg, stepsize):
|
||||
if self.t % 100 == 0:
|
||||
self.check_synced()
|
||||
localg = localg.astype('float32')
|
||||
if self.comm is not None:
|
||||
globalg = np.zeros_like(localg)
|
||||
self.comm.Allreduce(localg, globalg, op=MPI.SUM)
|
||||
if self.scale_grad_by_procs:
|
||||
globalg /= self.comm.Get_size()
|
||||
else:
|
||||
globalg = np.copy(localg)
|
||||
|
||||
self.t += 1
|
||||
a = stepsize * np.sqrt(1 - self.beta2**self.t)/(1 - self.beta1**self.t)
|
||||
@@ -35,11 +42,15 @@ class MpiAdam(object):
|
||||
self.setfromflat(self.getflat() + step)
|
||||
|
||||
def sync(self):
|
||||
if self.comm is None:
|
||||
return
|
||||
theta = self.getflat()
|
||||
self.comm.Bcast(theta, root=0)
|
||||
self.setfromflat(theta)
|
||||
|
||||
def check_synced(self):
|
||||
if self.comm is None:
|
||||
return
|
||||
if self.comm.Get_rank() == 0: # this is root
|
||||
theta = self.getflat()
|
||||
self.comm.Bcast(theta, root=0)
|
||||
@@ -63,17 +74,30 @@ def test_MpiAdam():
|
||||
do_update = U.function([], loss, updates=[update_op])
|
||||
|
||||
tf.get_default_session().run(tf.global_variables_initializer())
|
||||
losslist_ref = []
|
||||
for i in range(10):
|
||||
print(i,do_update())
|
||||
l = do_update()
|
||||
print(i, l)
|
||||
losslist_ref.append(l)
|
||||
|
||||
|
||||
|
||||
tf.set_random_seed(0)
|
||||
tf.get_default_session().run(tf.global_variables_initializer())
|
||||
|
||||
var_list = [a,b]
|
||||
lossandgrad = U.function([], [loss, U.flatgrad(loss, var_list)], updates=[update_op])
|
||||
lossandgrad = U.function([], [loss, U.flatgrad(loss, var_list)])
|
||||
adam = MpiAdam(var_list)
|
||||
|
||||
losslist_test = []
|
||||
for i in range(10):
|
||||
l,g = lossandgrad()
|
||||
adam.update(g, stepsize)
|
||||
print(i,l)
|
||||
losslist_test.append(l)
|
||||
|
||||
np.testing.assert_allclose(np.array(losslist_ref), np.array(losslist_test), atol=1e-4)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_MpiAdam()
|
||||
|
@@ -1,4 +1,8 @@
|
||||
try:
|
||||
from mpi4py import MPI
|
||||
except ImportError:
|
||||
MPI = None
|
||||
|
||||
import tensorflow as tf, baselines.common.tf_util as U, numpy as np
|
||||
|
||||
class RunningMeanStd(object):
|
||||
@@ -39,6 +43,7 @@ class RunningMeanStd(object):
|
||||
n = int(np.prod(self.shape))
|
||||
totalvec = np.zeros(n*2+1, 'float64')
|
||||
addvec = np.concatenate([x.sum(axis=0).ravel(), np.square(x).sum(axis=0).ravel(), np.array([len(x)],dtype='float64')])
|
||||
if MPI is not None:
|
||||
MPI.COMM_WORLD.Allreduce(addvec, totalvec, op=MPI.SUM)
|
||||
self.incfiltparams(totalvec[0:n].reshape(self.shape), totalvec[n:2*n].reshape(self.shape), totalvec[2*n])
|
||||
|
||||
|
401
baselines/common/plot_util.py
Normal file
401
baselines/common/plot_util.py
Normal file
@@ -0,0 +1,401 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import os.path as osp
|
||||
import json
|
||||
import os
|
||||
import numpy as np
|
||||
import pandas
|
||||
from collections import defaultdict, namedtuple
|
||||
from baselines.bench import monitor
|
||||
from baselines.logger import read_json, read_csv
|
||||
|
||||
def smooth(y, radius, mode='two_sided', valid_only=False):
|
||||
'''
|
||||
Smooth signal y, where radius is determines the size of the window
|
||||
|
||||
mode='twosided':
|
||||
average over the window [max(index - radius, 0), min(index + radius, len(y)-1)]
|
||||
mode='causal':
|
||||
average over the window [max(index - radius, 0), index]
|
||||
|
||||
valid_only: put nan in entries where the full-sized window is not available
|
||||
|
||||
'''
|
||||
assert mode in ('two_sided', 'causal')
|
||||
if len(y) < 2*radius+1:
|
||||
return np.ones_like(y) * y.mean()
|
||||
elif mode == 'two_sided':
|
||||
convkernel = np.ones(2 * radius+1)
|
||||
out = np.convolve(y, convkernel,mode='same') / np.convolve(np.ones_like(y), convkernel, mode='same')
|
||||
if valid_only:
|
||||
out[:radius] = out[-radius:] = np.nan
|
||||
elif mode == 'causal':
|
||||
convkernel = np.ones(radius)
|
||||
out = np.convolve(y, convkernel,mode='full') / np.convolve(np.ones_like(y), convkernel, mode='full')
|
||||
out = out[:-radius+1]
|
||||
if valid_only:
|
||||
out[:radius] = np.nan
|
||||
return out
|
||||
|
||||
def one_sided_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_counts_threshold=1e-8):
|
||||
'''
|
||||
perform one-sided (causal) EMA (exponential moving average)
|
||||
smoothing and resampling to an even grid with n points.
|
||||
Does not do extrapolation, so we assume
|
||||
xolds[0] <= low && high <= xolds[-1]
|
||||
|
||||
Arguments:
|
||||
|
||||
xolds: array or list - x values of data. Needs to be sorted in ascending order
|
||||
yolds: array of list - y values of data. Has to have the same length as xolds
|
||||
|
||||
low: float - min value of the new x grid. By default equals to xolds[0]
|
||||
high: float - max value of the new x grid. By default equals to xolds[-1]
|
||||
|
||||
n: int - number of points in new x grid
|
||||
|
||||
decay_steps: float - EMA decay factor, expressed in new x grid steps.
|
||||
|
||||
low_counts_threshold: float or int
|
||||
- y values with counts less than this value will be set to NaN
|
||||
|
||||
Returns:
|
||||
tuple sum_ys, count_ys where
|
||||
xs - array with new x grid
|
||||
ys - array of EMA of y at each point of the new x grid
|
||||
count_ys - array of EMA of y counts at each point of the new x grid
|
||||
|
||||
'''
|
||||
|
||||
low = xolds[0] if low is None else low
|
||||
high = xolds[-1] if high is None else high
|
||||
|
||||
assert xolds[0] <= low, 'low = {} < xolds[0] = {} - extrapolation not permitted!'.format(low, xolds[0])
|
||||
assert xolds[-1] >= high, 'high = {} > xolds[-1] = {} - extrapolation not permitted!'.format(high, xolds[-1])
|
||||
assert len(xolds) == len(yolds), 'length of xolds ({}) and yolds ({}) do not match!'.format(len(xolds), len(yolds))
|
||||
|
||||
|
||||
xolds = xolds.astype('float64')
|
||||
yolds = yolds.astype('float64')
|
||||
|
||||
luoi = 0 # last unused old index
|
||||
sum_y = 0.
|
||||
count_y = 0.
|
||||
xnews = np.linspace(low, high, n)
|
||||
decay_period = (high - low) / (n - 1) * decay_steps
|
||||
interstep_decay = np.exp(- 1. / decay_steps)
|
||||
sum_ys = np.zeros_like(xnews)
|
||||
count_ys = np.zeros_like(xnews)
|
||||
for i in range(n):
|
||||
xnew = xnews[i]
|
||||
sum_y *= interstep_decay
|
||||
count_y *= interstep_decay
|
||||
while True:
|
||||
xold = xolds[luoi]
|
||||
if xold <= xnew:
|
||||
decay = np.exp(- (xnew - xold) / decay_period)
|
||||
sum_y += decay * yolds[luoi]
|
||||
count_y += decay
|
||||
luoi += 1
|
||||
else:
|
||||
break
|
||||
if luoi >= len(xolds):
|
||||
break
|
||||
sum_ys[i] = sum_y
|
||||
count_ys[i] = count_y
|
||||
|
||||
ys = sum_ys / count_ys
|
||||
ys[count_ys < low_counts_threshold] = np.nan
|
||||
|
||||
return xnews, ys, count_ys
|
||||
|
||||
def symmetric_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_counts_threshold=1e-8):
|
||||
'''
|
||||
perform symmetric EMA (exponential moving average)
|
||||
smoothing and resampling to an even grid with n points.
|
||||
Does not do extrapolation, so we assume
|
||||
xolds[0] <= low && high <= xolds[-1]
|
||||
|
||||
Arguments:
|
||||
|
||||
xolds: array or list - x values of data. Needs to be sorted in ascending order
|
||||
yolds: array of list - y values of data. Has to have the same length as xolds
|
||||
|
||||
low: float - min value of the new x grid. By default equals to xolds[0]
|
||||
high: float - max value of the new x grid. By default equals to xolds[-1]
|
||||
|
||||
n: int - number of points in new x grid
|
||||
|
||||
decay_steps: float - EMA decay factor, expressed in new x grid steps.
|
||||
|
||||
low_counts_threshold: float or int
|
||||
- y values with counts less than this value will be set to NaN
|
||||
|
||||
Returns:
|
||||
tuple sum_ys, count_ys where
|
||||
xs - array with new x grid
|
||||
ys - array of EMA of y at each point of the new x grid
|
||||
count_ys - array of EMA of y counts at each point of the new x grid
|
||||
|
||||
'''
|
||||
xs, ys1, count_ys1 = one_sided_ema(xolds, yolds, low, high, n, decay_steps, low_counts_threshold=0)
|
||||
_, ys2, count_ys2 = one_sided_ema(-xolds[::-1], yolds[::-1], -high, -low, n, decay_steps, low_counts_threshold=0)
|
||||
ys2 = ys2[::-1]
|
||||
count_ys2 = count_ys2[::-1]
|
||||
count_ys = count_ys1 + count_ys2
|
||||
ys = (ys1 * count_ys1 + ys2 * count_ys2) / count_ys
|
||||
ys[count_ys < low_counts_threshold] = np.nan
|
||||
return xs, ys, count_ys
|
||||
|
||||
Result = namedtuple('Result', 'monitor progress dirname metadata')
|
||||
Result.__new__.__defaults__ = (None,) * len(Result._fields)
|
||||
|
||||
def load_results(root_dir_or_dirs, enable_progress=True, enable_monitor=True, verbose=False):
|
||||
'''
|
||||
load summaries of runs from a list of directories (including subdirectories)
|
||||
Arguments:
|
||||
|
||||
enable_progress: bool - if True, will attempt to load data from progress.csv files (data saved by logger). Default: True
|
||||
|
||||
enable_monitor: bool - if True, will attempt to load data from monitor.csv files (data saved by Monitor environment wrapper). Default: True
|
||||
|
||||
verbose: bool - if True, will print out list of directories from which the data is loaded. Default: False
|
||||
|
||||
|
||||
Returns:
|
||||
List of Result objects with the following fields:
|
||||
- dirname - path to the directory data was loaded from
|
||||
- metadata - run metadata (such as command-line arguments and anything else in metadata.json file
|
||||
- monitor - if enable_monitor is True, this field contains pandas dataframe with loaded monitor.csv file (or aggregate of all *.monitor.csv files in the directory)
|
||||
- progress - if enable_progress is True, this field contains pandas dataframe with loaded progress.csv file
|
||||
'''
|
||||
if isinstance(root_dir_or_dirs, str):
|
||||
rootdirs = [osp.expanduser(root_dir_or_dirs)]
|
||||
else:
|
||||
rootdirs = [osp.expanduser(d) for d in root_dir_or_dirs]
|
||||
allresults = []
|
||||
for rootdir in rootdirs:
|
||||
assert osp.exists(rootdir), "%s doesn't exist"%rootdir
|
||||
for dirname, dirs, files in os.walk(rootdir):
|
||||
if '-proc' in dirname:
|
||||
files[:] = []
|
||||
continue
|
||||
if set(['metadata.json', 'monitor.json', 'monitor.csv', 'progress.json', 'progress.csv']).intersection(files):
|
||||
# used to be uncommented, which means do not go deeper than current directory if any of the data files
|
||||
# are found
|
||||
# dirs[:] = []
|
||||
result = {'dirname' : dirname}
|
||||
if "metadata.json" in files:
|
||||
with open(osp.join(dirname, "metadata.json"), "r") as fh:
|
||||
result['metadata'] = json.load(fh)
|
||||
progjson = osp.join(dirname, "progress.json")
|
||||
progcsv = osp.join(dirname, "progress.csv")
|
||||
if enable_progress:
|
||||
if osp.exists(progjson):
|
||||
result['progress'] = pandas.DataFrame(read_json(progjson))
|
||||
elif osp.exists(progcsv):
|
||||
try:
|
||||
result['progress'] = read_csv(progcsv)
|
||||
except pandas.errors.EmptyDataError:
|
||||
print('skipping progress file in ', dirname, 'empty data')
|
||||
else:
|
||||
if verbose: print('skipping %s: no progress file'%dirname)
|
||||
|
||||
if enable_monitor:
|
||||
try:
|
||||
result['monitor'] = pandas.DataFrame(monitor.load_results(dirname))
|
||||
except monitor.LoadMonitorResultsError:
|
||||
print('skipping %s: no monitor files'%dirname)
|
||||
except Exception as e:
|
||||
print('exception loading monitor file in %s: %s'%(dirname, e))
|
||||
|
||||
if result.get('monitor') is not None or result.get('progress') is not None:
|
||||
allresults.append(Result(**result))
|
||||
if verbose:
|
||||
print('successfully loaded %s'%dirname)
|
||||
|
||||
if verbose: print('loaded %i results'%len(allresults))
|
||||
return allresults
|
||||
|
||||
COLORS = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'purple', 'pink',
|
||||
'brown', 'orange', 'teal', 'lightblue', 'lime', 'lavender', 'turquoise',
|
||||
'darkgreen', 'tan', 'salmon', 'gold', 'darkred', 'darkblue']
|
||||
|
||||
|
||||
def default_xy_fn(r):
|
||||
x = np.cumsum(r.monitor.l)
|
||||
y = smooth(r.monitor.r, radius=10)
|
||||
return x,y
|
||||
|
||||
def default_split_fn(r):
|
||||
import re
|
||||
# match name between slash and -<digits> at the end of the string
|
||||
# (slash in the beginning or -<digits> in the end or either may be missing)
|
||||
match = re.search(r'[^/-]+(?=(-\d+)?\Z)', r.dirname)
|
||||
if match:
|
||||
return match.group(0)
|
||||
|
||||
def plot_results(
|
||||
allresults, *,
|
||||
xy_fn=default_xy_fn,
|
||||
split_fn=default_split_fn,
|
||||
group_fn=default_split_fn,
|
||||
average_group=False,
|
||||
shaded_std=True,
|
||||
shaded_err=True,
|
||||
figsize=None,
|
||||
legend_outside=False,
|
||||
resample=0,
|
||||
smooth_step=1.0,
|
||||
):
|
||||
'''
|
||||
Plot multiple Results objects
|
||||
|
||||
xy_fn: function Result -> x,y - function that converts results objects into tuple of x and y values.
|
||||
By default, x is cumsum of episode lengths, and y is episode rewards
|
||||
|
||||
split_fn: function Result -> hashable - function that converts results objects into keys to split curves into sub-panels by.
|
||||
That is, the results r for which split_fn(r) is different will be put on different sub-panels.
|
||||
By default, the portion of r.dirname between last / and -<digits> is returned. The sub-panels are
|
||||
stacked vertically in the figure.
|
||||
|
||||
group_fn: function Result -> hashable - function that converts results objects into keys to group curves by.
|
||||
That is, the results r for which group_fn(r) is the same will be put into the same group.
|
||||
Curves in the same group have the same color (if average_group is False), or averaged over
|
||||
(if average_group is True). The default value is the same as default value for split_fn
|
||||
|
||||
average_group: bool - if True, will average the curves in the same group and plot the mean. Enables resampling
|
||||
(if resample = 0, will use 512 steps)
|
||||
|
||||
shaded_std: bool - if True (default), the shaded region corresponding to standard deviation of the group of curves will be
|
||||
shown (only applicable if average_group = True)
|
||||
|
||||
shaded_err: bool - if True (default), the shaded region corresponding to error in mean estimate of the group of curves
|
||||
(that is, standard deviation divided by square root of number of curves) will be
|
||||
shown (only applicable if average_group = True)
|
||||
|
||||
figsize: tuple or None - size of the resulting figure (including sub-panels). By default, width is 6 and height is 6 times number of
|
||||
sub-panels.
|
||||
|
||||
|
||||
legend_outside: bool - if True, will place the legend outside of the sub-panels.
|
||||
|
||||
resample: int - if not zero, size of the uniform grid in x direction to resample onto. Resampling is performed via symmetric
|
||||
EMA smoothing (see the docstring for symmetric_ema).
|
||||
Default is zero (no resampling). Note that if average_group is True, resampling is necessary; in that case, default
|
||||
value is 512.
|
||||
|
||||
smooth_step: float - when resampling (i.e. when resample > 0 or average_group is True), use this EMA decay parameter (in units of the new grid step).
|
||||
See docstrings for decay_steps in symmetric_ema or one_sided_ema functions.
|
||||
|
||||
'''
|
||||
|
||||
if split_fn is None: split_fn = lambda _ : ''
|
||||
if group_fn is None: group_fn = lambda _ : ''
|
||||
sk2r = defaultdict(list) # splitkey2results
|
||||
for result in allresults:
|
||||
splitkey = split_fn(result)
|
||||
sk2r[splitkey].append(result)
|
||||
assert len(sk2r) > 0
|
||||
assert isinstance(resample, int), "0: don't resample. <integer>: that many samples"
|
||||
nrows = len(sk2r)
|
||||
ncols = 1
|
||||
figsize = figsize or (6, 6 * nrows)
|
||||
f, axarr = plt.subplots(nrows, ncols, sharex=False, squeeze=False, figsize=figsize)
|
||||
|
||||
groups = list(set(group_fn(result) for result in allresults))
|
||||
|
||||
default_samples = 512
|
||||
if average_group:
|
||||
resample = resample or default_samples
|
||||
|
||||
for (isplit, sk) in enumerate(sorted(sk2r.keys())):
|
||||
g2l = {}
|
||||
g2c = defaultdict(int)
|
||||
sresults = sk2r[sk]
|
||||
gresults = defaultdict(list)
|
||||
ax = axarr[isplit][0]
|
||||
for result in sresults:
|
||||
group = group_fn(result)
|
||||
g2c[group] += 1
|
||||
x, y = xy_fn(result)
|
||||
if x is None: x = np.arange(len(y))
|
||||
x, y = map(np.asarray, (x, y))
|
||||
if average_group:
|
||||
gresults[group].append((x,y))
|
||||
else:
|
||||
if resample:
|
||||
x, y, counts = symmetric_ema(x, y, x[0], x[-1], resample, decay_steps=smooth_step)
|
||||
l, = ax.plot(x, y, color=COLORS[groups.index(group) % len(COLORS)])
|
||||
g2l[group] = l
|
||||
if average_group:
|
||||
for group in sorted(groups):
|
||||
xys = gresults[group]
|
||||
if not any(xys):
|
||||
continue
|
||||
color = COLORS[groups.index(group) % len(COLORS)]
|
||||
origxs = [xy[0] for xy in xys]
|
||||
minxlen = min(map(len, origxs))
|
||||
def allequal(qs):
|
||||
return all((q==qs[0]).all() for q in qs[1:])
|
||||
if resample:
|
||||
low = max(x[0] for x in origxs)
|
||||
high = min(x[-1] for x in origxs)
|
||||
usex = np.linspace(low, high, resample)
|
||||
ys = []
|
||||
for (x, y) in xys:
|
||||
ys.append(symmetric_ema(x, y, low, high, resample, decay_steps=smooth_step)[1])
|
||||
else:
|
||||
assert allequal([x[:minxlen] for x in origxs]),\
|
||||
'If you want to average unevenly sampled data, set resample=<number of samples you want>'
|
||||
usex = origxs[0]
|
||||
ys = [xy[1][:minxlen] for xy in xys]
|
||||
ymean = np.mean(ys, axis=0)
|
||||
ystd = np.std(ys, axis=0)
|
||||
ystderr = ystd / np.sqrt(len(ys))
|
||||
l, = axarr[isplit][0].plot(usex, ymean, color=color)
|
||||
g2l[group] = l
|
||||
if shaded_err:
|
||||
ax.fill_between(usex, ymean - ystderr, ymean + ystderr, color=color, alpha=.4)
|
||||
if shaded_std:
|
||||
ax.fill_between(usex, ymean - ystd, ymean + ystd, color=color, alpha=.2)
|
||||
|
||||
|
||||
# https://matplotlib.org/users/legend_guide.html
|
||||
plt.tight_layout()
|
||||
if any(g2l.keys()):
|
||||
ax.legend(
|
||||
g2l.values(),
|
||||
['%s (%i)'%(g, g2c[g]) for g in g2l] if average_group else g2l.keys(),
|
||||
loc=2 if legend_outside else None,
|
||||
bbox_to_anchor=(1,1) if legend_outside else None)
|
||||
ax.set_title(sk)
|
||||
return f, axarr
|
||||
|
||||
def regression_analysis(df):
|
||||
xcols = list(df.columns.copy())
|
||||
xcols.remove('score')
|
||||
ycols = ['score']
|
||||
import statsmodels.api as sm
|
||||
mod = sm.OLS(df[ycols], sm.add_constant(df[xcols]), hasconst=False)
|
||||
res = mod.fit()
|
||||
print(res.summary())
|
||||
|
||||
def test_smooth():
|
||||
norig = 100
|
||||
nup = 300
|
||||
ndown = 30
|
||||
xs = np.cumsum(np.random.rand(norig) * 10 / norig)
|
||||
yclean = np.sin(xs)
|
||||
ys = yclean + .1 * np.random.randn(yclean.size)
|
||||
xup, yup, _ = symmetric_ema(xs, ys, xs.min(), xs.max(), nup, decay_steps=nup/ndown)
|
||||
xdown, ydown, _ = symmetric_ema(xs, ys, xs.min(), xs.max(), ndown, decay_steps=ndown/ndown)
|
||||
xsame, ysame, _ = symmetric_ema(xs, ys, xs.min(), xs.max(), norig, decay_steps=norig/ndown)
|
||||
plt.plot(xs, ys, label='orig', marker='x')
|
||||
plt.plot(xup, yup, label='up', marker='x')
|
||||
plt.plot(xdown, ydown, label='down', marker='x')
|
||||
plt.plot(xsame, ysame, label='same', marker='x')
|
||||
plt.plot(xs, yclean, label='clean', marker='x')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
|
@@ -32,6 +32,11 @@ class VecEnv(ABC):
|
||||
"""
|
||||
closed = False
|
||||
viewer = None
|
||||
|
||||
metadata = {
|
||||
'render.modes': ['human', 'rgb_array']
|
||||
}
|
||||
|
||||
def __init__(self, num_envs, observation_space, action_space):
|
||||
self.num_envs = num_envs
|
||||
self.observation_space = observation_space
|
||||
|
@@ -20,9 +20,6 @@ class DummyVecEnv(VecEnv):
|
||||
env = self.envs[0]
|
||||
VecEnv.__init__(self, len(env_fns), env.observation_space, env.action_space)
|
||||
obs_space = env.observation_space
|
||||
if isinstance(obs_space, spaces.MultiDiscrete):
|
||||
obs_space.shape = obs_space.shape[0]
|
||||
|
||||
self.keys, shapes, dtypes = obs_space_info(obs_space)
|
||||
|
||||
self.buf_obs = { k: np.zeros((self.num_envs,) + tuple(shapes[k]), dtype=dtypes[k]) for k in self.keys }
|
||||
@@ -79,6 +76,6 @@ class DummyVecEnv(VecEnv):
|
||||
|
||||
def render(self, mode='human'):
|
||||
if self.num_envs == 1:
|
||||
self.envs[0].render(mode=mode)
|
||||
return self.envs[0].render(mode=mode)
|
||||
else:
|
||||
super().render(mode=mode)
|
||||
return super().render(mode=mode)
|
||||
|
49
baselines/common/vec_env/test_video_recorder.py
Normal file
49
baselines/common/vec_env/test_video_recorder.py
Normal file
@@ -0,0 +1,49 @@
|
||||
"""
|
||||
Tests for asynchronous vectorized environments.
|
||||
"""
|
||||
|
||||
import gym
|
||||
import pytest
|
||||
import os
|
||||
import glob
|
||||
import tempfile
|
||||
|
||||
from .dummy_vec_env import DummyVecEnv
|
||||
from .shmem_vec_env import ShmemVecEnv
|
||||
from .subproc_vec_env import SubprocVecEnv
|
||||
from .vec_video_recorder import VecVideoRecorder
|
||||
|
||||
@pytest.mark.parametrize('klass', (DummyVecEnv, ShmemVecEnv, SubprocVecEnv))
|
||||
@pytest.mark.parametrize('num_envs', (1, 4))
|
||||
@pytest.mark.parametrize('video_length', (10, 100))
|
||||
@pytest.mark.parametrize('video_interval', (1, 50))
|
||||
def test_video_recorder(klass, num_envs, video_length, video_interval):
|
||||
"""
|
||||
Wrap an existing VecEnv with VevVideoRecorder,
|
||||
Make (video_interval + video_length + 1) steps,
|
||||
then check that the file is present
|
||||
"""
|
||||
|
||||
def make_fn():
|
||||
env = gym.make('PongNoFrameskip-v4')
|
||||
return env
|
||||
fns = [make_fn for _ in range(num_envs)]
|
||||
env = klass(fns)
|
||||
|
||||
with tempfile.TemporaryDirectory() as video_path:
|
||||
env = VecVideoRecorder(env, video_path, record_video_trigger=lambda x: x % video_interval == 0, video_length=video_length)
|
||||
|
||||
env.reset()
|
||||
for _ in range(video_interval + video_length + 1):
|
||||
env.step([0] * num_envs)
|
||||
env.close()
|
||||
|
||||
|
||||
recorded_video = glob.glob(os.path.join(video_path, "*.mp4"))
|
||||
|
||||
# first and second step
|
||||
assert len(recorded_video) == 2
|
||||
# Files are not empty
|
||||
assert all(os.stat(p).st_size != 0 for p in recorded_video)
|
||||
|
||||
|
89
baselines/common/vec_env/vec_video_recorder.py
Normal file
89
baselines/common/vec_env/vec_video_recorder.py
Normal file
@@ -0,0 +1,89 @@
|
||||
import os
|
||||
from baselines import logger
|
||||
from baselines.common.vec_env import VecEnvWrapper
|
||||
from gym.wrappers.monitoring import video_recorder
|
||||
|
||||
|
||||
class VecVideoRecorder(VecEnvWrapper):
|
||||
"""
|
||||
Wrap VecEnv to record rendered image as mp4 video.
|
||||
"""
|
||||
|
||||
def __init__(self, venv, directory, record_video_trigger, video_length=200):
|
||||
"""
|
||||
# Arguments
|
||||
venv: VecEnv to wrap
|
||||
directory: Where to save videos
|
||||
record_video_trigger:
|
||||
Function that defines when to start recording.
|
||||
The function takes the current number of step,
|
||||
and returns whether we should start recording or not.
|
||||
video_length: Length of recorded video
|
||||
"""
|
||||
|
||||
VecEnvWrapper.__init__(self, venv)
|
||||
self.record_video_trigger = record_video_trigger
|
||||
self.video_recorder = None
|
||||
|
||||
self.directory = os.path.abspath(directory)
|
||||
if not os.path.exists(self.directory): os.mkdir(self.directory)
|
||||
|
||||
self.file_prefix = "vecenv"
|
||||
self.file_infix = '{}'.format(os.getpid())
|
||||
self.step_id = 0
|
||||
self.video_length = video_length
|
||||
|
||||
self.recording = False
|
||||
self.recorded_frames = 0
|
||||
|
||||
def reset(self):
|
||||
obs = self.venv.reset()
|
||||
|
||||
self.start_video_recorder()
|
||||
|
||||
return obs
|
||||
|
||||
def start_video_recorder(self):
|
||||
self.close_video_recorder()
|
||||
|
||||
base_path = os.path.join(self.directory, '{}.video.{}.video{:06}'.format(self.file_prefix, self.file_infix, self.step_id))
|
||||
self.video_recorder = video_recorder.VideoRecorder(
|
||||
env=self.venv,
|
||||
base_path=base_path,
|
||||
metadata={'step_id': self.step_id}
|
||||
)
|
||||
|
||||
self.video_recorder.capture_frame()
|
||||
self.recorded_frames = 1
|
||||
self.recording = True
|
||||
|
||||
def _video_enabled(self):
|
||||
return self.record_video_trigger(self.step_id)
|
||||
|
||||
def step_wait(self):
|
||||
obs, rews, dones, infos = self.venv.step_wait()
|
||||
|
||||
self.step_id += 1
|
||||
if self.recording:
|
||||
self.video_recorder.capture_frame()
|
||||
self.recorded_frames += 1
|
||||
if self.recorded_frames > self.video_length:
|
||||
logger.info("Saving video to ", self.video_recorder.path)
|
||||
self.close_video_recorder()
|
||||
elif self._video_enabled():
|
||||
self.start_video_recorder()
|
||||
|
||||
return obs, rews, dones, infos
|
||||
|
||||
def close_video_recorder(self):
|
||||
if self.recording:
|
||||
self.video_recorder.close()
|
||||
self.recording = False
|
||||
self.recorded_frames = 0
|
||||
|
||||
def close(self):
|
||||
VecEnvWrapper.close(self)
|
||||
self.close_video_recorder()
|
||||
|
||||
def __del__(self):
|
||||
self.close()
|
@@ -12,8 +12,11 @@ import baselines.common.tf_util as U
|
||||
|
||||
from baselines import logger
|
||||
import numpy as np
|
||||
from mpi4py import MPI
|
||||
|
||||
try:
|
||||
from mpi4py import MPI
|
||||
except ImportError:
|
||||
MPI = None
|
||||
|
||||
def learn(network, env,
|
||||
seed=None,
|
||||
@@ -49,7 +52,11 @@ def learn(network, env,
|
||||
else:
|
||||
nb_epochs = 500
|
||||
|
||||
if MPI is not None:
|
||||
rank = MPI.COMM_WORLD.Get_rank()
|
||||
else:
|
||||
rank = 0
|
||||
|
||||
nb_actions = env.action_space.shape[-1]
|
||||
assert (np.abs(env.action_space.low) == env.action_space.high).all() # we assume symmetric actions.
|
||||
|
||||
@@ -59,7 +66,6 @@ def learn(network, env,
|
||||
|
||||
action_noise = None
|
||||
param_noise = None
|
||||
nb_actions = env.action_space.shape[-1]
|
||||
if noise_type is not None:
|
||||
for current_noise_type in noise_type.split(','):
|
||||
current_noise_type = current_noise_type.strip()
|
||||
@@ -200,7 +206,11 @@ def learn(network, env,
|
||||
eval_episode_rewards_history.append(eval_episode_reward[d])
|
||||
eval_episode_reward[d] = 0.0
|
||||
|
||||
if MPI is not None:
|
||||
mpi_size = MPI.COMM_WORLD.Get_size()
|
||||
else:
|
||||
mpi_size = 1
|
||||
|
||||
# Log stats.
|
||||
# XXX shouldn't call np.mean on variable length lists
|
||||
duration = time.time() - start_time
|
||||
@@ -234,7 +244,10 @@ def learn(network, env,
|
||||
else:
|
||||
raise ValueError('expected scalar, got %s'%x)
|
||||
|
||||
combined_stats_sums = MPI.COMM_WORLD.allreduce(np.array([ np.array(x).flatten()[0] for x in combined_stats.values()]))
|
||||
combined_stats_sums = np.array([ np.array(x).flatten()[0] for x in combined_stats.values()])
|
||||
if MPI is not None:
|
||||
combined_stats_sums = MPI.COMM_WORLD.allreduce(combined_stats_sums)
|
||||
|
||||
combined_stats = {k : v / mpi_size for (k,v) in zip(combined_stats.keys(), combined_stats_sums)}
|
||||
|
||||
# Total statistics.
|
||||
|
@@ -9,7 +9,10 @@ from baselines import logger
|
||||
from baselines.common.mpi_adam import MpiAdam
|
||||
import baselines.common.tf_util as U
|
||||
from baselines.common.mpi_running_mean_std import RunningMeanStd
|
||||
try:
|
||||
from mpi4py import MPI
|
||||
except ImportError:
|
||||
MPI = None
|
||||
|
||||
def normalize(x, stats):
|
||||
if stats is None:
|
||||
@@ -268,7 +271,7 @@ class DDPG(object):
|
||||
|
||||
if self.action_noise is not None and apply_noise:
|
||||
noise = self.action_noise()
|
||||
assert noise.shape == action.shape
|
||||
assert noise.shape == action[0].shape
|
||||
action += noise
|
||||
action = np.clip(action, self.action_range[0], self.action_range[1])
|
||||
|
||||
@@ -358,6 +361,11 @@ class DDPG(object):
|
||||
return stats
|
||||
|
||||
def adapt_param_noise(self):
|
||||
try:
|
||||
from mpi4py import MPI
|
||||
except ImportError:
|
||||
MPI = None
|
||||
|
||||
if self.param_noise is None:
|
||||
return 0.
|
||||
|
||||
@@ -371,7 +379,16 @@ class DDPG(object):
|
||||
self.param_noise_stddev: self.param_noise.current_stddev,
|
||||
})
|
||||
|
||||
if MPI is not None:
|
||||
mean_distance = MPI.COMM_WORLD.allreduce(distance, op=MPI.SUM) / MPI.COMM_WORLD.Get_size()
|
||||
else:
|
||||
mean_distance = distance
|
||||
|
||||
if MPI is not None:
|
||||
mean_distance = MPI.COMM_WORLD.allreduce(distance, op=MPI.SUM) / MPI.COMM_WORLD.Get_size()
|
||||
else:
|
||||
mean_distance = distance
|
||||
|
||||
self.param_noise.adapt(mean_distance)
|
||||
return mean_distance
|
||||
|
||||
|
@@ -20,3 +20,6 @@ def atari():
|
||||
lr=lambda f : f * 2.5e-4,
|
||||
cliprange=lambda f : f * 0.1,
|
||||
)
|
||||
|
||||
def retro():
|
||||
return atari()
|
||||
|
@@ -10,11 +10,15 @@ from baselines.common import explained_variance, set_global_seeds
|
||||
from baselines.common.policies import build_policy
|
||||
from baselines.common.runners import AbstractEnvRunner
|
||||
from baselines.common.tf_util import get_session, save_variables, load_variables
|
||||
from baselines.common.mpi_adam_optimizer import MpiAdamOptimizer
|
||||
|
||||
try:
|
||||
from baselines.common.mpi_adam_optimizer import MpiAdamOptimizer
|
||||
from mpi4py import MPI
|
||||
from baselines.common.tf_util import initialize
|
||||
from baselines.common.mpi_util import sync_from_root
|
||||
except ImportError:
|
||||
MPI = None
|
||||
|
||||
from baselines.common.tf_util import initialize
|
||||
|
||||
class Model(object):
|
||||
"""
|
||||
@@ -93,7 +97,10 @@ class Model(object):
|
||||
# 1. Get the model parameters
|
||||
params = tf.trainable_variables('ppo2_model')
|
||||
# 2. Build our trainer
|
||||
if MPI is not None:
|
||||
trainer = MpiAdamOptimizer(MPI.COMM_WORLD, learning_rate=LR, epsilon=1e-5)
|
||||
else:
|
||||
trainer = tf.train.AdamOptimizer(learning_rate=LR, epsilon=1e-5)
|
||||
# 3. Calculate the gradients
|
||||
grads_and_var = trainer.compute_gradients(loss, params)
|
||||
grads, var = zip(*grads_and_var)
|
||||
@@ -136,9 +143,11 @@ class Model(object):
|
||||
self.save = functools.partial(save_variables, sess=sess)
|
||||
self.load = functools.partial(load_variables, sess=sess)
|
||||
|
||||
if MPI.COMM_WORLD.Get_rank() == 0:
|
||||
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
|
||||
initialize()
|
||||
global_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="")
|
||||
|
||||
if MPI is not None:
|
||||
sync_from_root(sess, global_variables) #pylint: disable=E1101
|
||||
|
||||
class Runner(AbstractEnvRunner):
|
||||
@@ -392,9 +401,9 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
|
||||
logger.logkv('time_elapsed', tnow - tfirststart)
|
||||
for (lossval, lossname) in zip(lossvals, model.loss_names):
|
||||
logger.logkv(lossname, lossval)
|
||||
if MPI.COMM_WORLD.Get_rank() == 0:
|
||||
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
|
||||
logger.dumpkvs()
|
||||
if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir() and MPI.COMM_WORLD.Get_rank() == 0:
|
||||
if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir() and (MPI is None or MPI.COMM_WORLD.Get_rank() == 0):
|
||||
checkdir = osp.join(logger.get_dir(), 'checkpoints')
|
||||
os.makedirs(checkdir, exist_ok=True)
|
||||
savepath = osp.join(checkdir, '%.5i'%update)
|
||||
|
@@ -6,6 +6,7 @@ from collections import defaultdict
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
|
||||
from baselines.common.vec_env.vec_video_recorder import VecVideoRecorder
|
||||
from baselines.common.vec_env.vec_frame_stack import VecFrameStack
|
||||
from baselines.common.cmd_util import common_arg_parser, parse_unknown_args, make_vec_env, make_env
|
||||
from baselines.common.tf_util import get_session
|
||||
@@ -62,6 +63,8 @@ def train(args, extra_args):
|
||||
alg_kwargs.update(extra_args)
|
||||
|
||||
env = build_env(args)
|
||||
if args.save_video_interval != 0:
|
||||
env = VecVideoRecorder(env, osp.join(logger.Logger.CURRENT.dir, "videos"), record_video_trigger=lambda x: x % args.save_video_interval == 0, video_length=args.save_video_length)
|
||||
|
||||
if args.network:
|
||||
alg_kwargs['network'] = args.network
|
||||
|
@@ -4,7 +4,6 @@ import baselines.common.tf_util as U
|
||||
import tensorflow as tf, numpy as np
|
||||
import time
|
||||
from baselines.common import colorize
|
||||
from mpi4py import MPI
|
||||
from collections import deque
|
||||
from baselines.common import set_global_seeds
|
||||
from baselines.common.mpi_adam import MpiAdam
|
||||
@@ -13,6 +12,11 @@ from baselines.common.input import observation_placeholder
|
||||
from baselines.common.policies import build_policy
|
||||
from contextlib import contextmanager
|
||||
|
||||
try:
|
||||
from mpi4py import MPI
|
||||
except ImportError:
|
||||
MPI = None
|
||||
|
||||
def traj_segment_generator(pi, env, horizon, stochastic):
|
||||
# Initialize state variables
|
||||
t = 0
|
||||
@@ -146,9 +150,12 @@ def learn(*,
|
||||
|
||||
'''
|
||||
|
||||
|
||||
if MPI is not None:
|
||||
nworkers = MPI.COMM_WORLD.Get_size()
|
||||
rank = MPI.COMM_WORLD.Get_rank()
|
||||
else:
|
||||
nworkers = 1
|
||||
rank = 0
|
||||
|
||||
cpus_per_worker = 1
|
||||
U.get_session(config=tf.ConfigProto(
|
||||
@@ -237,9 +244,13 @@ def learn(*,
|
||||
|
||||
def allmean(x):
|
||||
assert isinstance(x, np.ndarray)
|
||||
if MPI is not None:
|
||||
out = np.empty_like(x)
|
||||
MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
|
||||
out /= nworkers
|
||||
else:
|
||||
out = np.copy(x)
|
||||
|
||||
return out
|
||||
|
||||
U.initialize()
|
||||
@@ -247,7 +258,9 @@ def learn(*,
|
||||
pi.load(load_path)
|
||||
|
||||
th_init = get_flat()
|
||||
if MPI is not None:
|
||||
MPI.COMM_WORLD.Bcast(th_init, root=0)
|
||||
|
||||
set_from_flat(th_init)
|
||||
vfadam.sync()
|
||||
print("Init param sum", th_init.sum(), flush=True)
|
||||
@@ -353,7 +366,11 @@ def learn(*,
|
||||
logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))
|
||||
|
||||
lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values
|
||||
if MPI is not None:
|
||||
listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
|
||||
else:
|
||||
listoflrpairs = [lrlocal]
|
||||
|
||||
lens, rews = map(flatten_lists, zip(*listoflrpairs))
|
||||
lenbuffer.extend(lens)
|
||||
rewbuffer.extend(rews)
|
||||
|
808
docs/viz/viz.ipynb
Normal file
808
docs/viz/viz.ipynb
Normal file
File diff suppressed because one or more lines are too long
Reference in New Issue
Block a user