Compare commits
1 Commits
peterz_tfl
...
peterz_tfl
Author | SHA1 | Date | |
---|---|---|---|
|
b650cd862e |
@@ -92,6 +92,48 @@ def lstm(nlstm=128, layer_norm=False):
|
||||
|
||||
return network_fn
|
||||
|
||||
def tflstm_static(nlstm=128, layer_norm=False):
|
||||
def network_fn(X, nenv=1):
|
||||
nbatch = X.shape[0]
|
||||
nsteps = nbatch // nenv
|
||||
|
||||
h = tf.layers.flatten(X)
|
||||
rnn_cell = tf.nn.rnn_cell.BasicLSTMCell(nlstm, state_is_tuple=False, forget_bias=0.0)
|
||||
|
||||
S = tf.placeholder(tf.float32, rnn_cell.zero_state(nenv, dtype=tf.float32).shape) #states
|
||||
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
|
||||
|
||||
xs = batch_to_seq(h, nenv, nsteps)
|
||||
|
||||
h5, snew = tf.nn.static_rnn(rnn_cell, xs, initial_state=S)
|
||||
|
||||
h = seq_to_batch(h5)
|
||||
|
||||
initial_state = np.zeros(S.shape.as_list(), dtype=float)
|
||||
|
||||
return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state}
|
||||
|
||||
return network_fn
|
||||
|
||||
def tflstm(nlstm=128):
|
||||
def network_fn(X, nenv=1):
|
||||
nbatch = X.shape[0]
|
||||
nsteps = nbatch // nenv
|
||||
|
||||
h = tf.layers.flatten(X)
|
||||
rnn_cell = tf.nn.rnn_cell.BasicLSTMCell(nlstm, state_is_tuple=False, forget_bias=0.0)
|
||||
|
||||
S = tf.placeholder(tf.float32, rnn_cell.zero_state(nenv, dtype=tf.float32).shape) #states
|
||||
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
|
||||
initial_state = np.zeros(S.shape)
|
||||
|
||||
h = tf.reshape(h, (-1, nsteps, h.shape[-1]))
|
||||
h, snew = tf.nn.dynamic_rnn(rnn_cell, h, initial_state=S)
|
||||
|
||||
h = tf.reshape(h, (-1, h.shape[-1]))
|
||||
return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state}
|
||||
|
||||
return network_fn
|
||||
|
||||
def cnn_lstm(nlstm=128, layer_norm=False, **conv_kwargs):
|
||||
def network_fn(X, nenv=1):
|
||||
@@ -169,6 +211,10 @@ def get_network_builder(name):
|
||||
return mlp
|
||||
elif name == 'lstm':
|
||||
return lstm
|
||||
elif name == 'tflstm_static':
|
||||
return tflstm_static
|
||||
elif name == 'tflstm':
|
||||
return tflstm
|
||||
elif name == 'cnn_lstm':
|
||||
return cnn_lstm
|
||||
elif name == 'cnn_lnlstm':
|
||||
|
@@ -6,7 +6,8 @@ from baselines.run import get_learn_function
|
||||
|
||||
common_kwargs = dict(
|
||||
seed=0,
|
||||
total_timesteps=50000,
|
||||
total_timesteps=20000,
|
||||
nlstm=64
|
||||
)
|
||||
|
||||
learn_kwargs = {
|
||||
@@ -19,7 +20,7 @@ learn_kwargs = {
|
||||
|
||||
|
||||
alg_list = learn_kwargs.keys()
|
||||
rnn_list = ['lstm']
|
||||
rnn_list = ['lstm', 'tflstm', 'tflstm_static']
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize("alg", alg_list)
|
||||
@@ -41,11 +42,11 @@ def test_fixed_sequence(alg, rnn):
|
||||
**kwargs
|
||||
)
|
||||
|
||||
simple_test(env_fn, learn, 0.7)
|
||||
simple_test(env_fn, learn, 0.3)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_fixed_sequence('ppo2', 'lstm')
|
||||
test_fixed_sequence('ppo2', 'tflstm')
|
||||
|
||||
|
||||
|
||||
|
@@ -2,6 +2,7 @@ import tensorflow as tf
|
||||
import numpy as np
|
||||
from gym.spaces import np_random
|
||||
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
|
||||
from baselines.bench.monitor import Monitor
|
||||
|
||||
N_TRIALS = 10000
|
||||
N_EPISODES = 100
|
||||
@@ -10,7 +11,7 @@ def simple_test(env_fn, learn_fn, min_reward_fraction, n_trials=N_TRIALS):
|
||||
np.random.seed(0)
|
||||
np_random.seed(0)
|
||||
|
||||
env = DummyVecEnv([env_fn])
|
||||
env = DummyVecEnv([lambda: Monitor(env_fn(), None, allow_early_resets=True)])
|
||||
|
||||
|
||||
with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(allow_soft_placement=True)).as_default():
|
||||
|
Reference in New Issue
Block a user