2018-10-10 18:03:03 -04:00
---
id: 5900f50d1000cf542c51001f
2021-02-06 04:42:36 +00:00
title: 'Problem 417: Reciprocal cycles II'
2018-10-10 18:03:03 -04:00
challengeType: 5
2021-02-06 04:42:36 +00:00
forumTopicId: 302086
2021-01-13 03:31:00 +01:00
dashedName: problem-417-reciprocal-cycles-ii
2018-10-10 18:03:03 -04:00
---
2020-12-16 00:37:30 -07:00
# --description--
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
1/2= 0.5 1/3= 0.(3) 1/4= 0.25 1/5= 0.2 1/6= 0.1(6) 1/7= 0.(142857) 1/8= 0.125 1/9= 0.(1) 1/10= 0.1
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle.
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
Unit fractions whose denominator has no other prime factors than 2 and/or 5 are not considered to have a recurring cycle. We define the length of the recurring cycle of those unit fractions as 0.
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
Let L(n) denote the length of the recurring cycle of 1/n. You are given that ∑L(n) for 3 ≤ n ≤ 1 000 000 equals 55535191115.
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
Find ∑L(n) for 3 ≤ n ≤ 100 000 000
2018-10-10 18:03:03 -04:00
2020-12-16 00:37:30 -07:00
# --hints--
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
`euler417()` should return 446572970925740.
2018-10-10 18:03:03 -04:00
```js
2020-12-16 00:37:30 -07:00
assert.strictEqual(euler417(), 446572970925740);
2018-10-10 18:03:03 -04:00
```
2020-08-13 17:24:35 +02:00
2021-01-13 03:31:00 +01:00
# --seed--
## --seed-contents--
```js
function euler417() {
return true;
}
euler417();
```
2020-12-16 00:37:30 -07:00
# --solutions--
2021-01-13 03:31:00 +01:00
```js
// solution required
```