2018-10-10 18:03:03 -04:00
---
id: 5900f5151000cf542c510028
2021-02-06 04:42:36 +00:00
title: 'Problem 425: Prime connection'
2018-10-10 18:03:03 -04:00
challengeType: 5
2021-02-06 04:42:36 +00:00
forumTopicId: 302095
2021-01-13 03:31:00 +01:00
dashedName: problem-425-prime-connection
2018-10-10 18:03:03 -04:00
---
2020-12-16 00:37:30 -07:00
# --description--
2021-02-06 04:42:36 +00:00
Two positive numbers A and B are said to be connected (denoted by "A ↔ B") if one of these conditions holds:
2020-12-16 00:37:30 -07:00
2021-02-06 04:42:36 +00:00
(1) A and B have the same length and differ in exactly one digit; for example, 123 ↔ 173.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
(2) Adding one digit to the left of A (or B) makes B (or A); for example, 23 ↔ 223 and 123 ↔ 23.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
We call a prime P a 2's relative if there exists a chain of connected primes between 2 and P and no prime in the chain exceeds P.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
For example, 127 is a 2's relative. One of the possible chains is shown below: 2 ↔ 3 ↔ 13 ↔ 113 ↔ 103 ↔ 107 ↔ 127 However, 11 and 103 are not 2's relatives.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
Let F(N) be the sum of the primes ≤ N which are not 2's relatives. We can verify that F(103) = 431 and F(104) = 78728.
2020-02-18 01:40:55 +09:00
2021-02-06 04:42:36 +00:00
Find F(107).
2018-10-10 18:03:03 -04:00
2020-12-16 00:37:30 -07:00
# --hints--
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
`euler425()` should return 46479497324.
2018-10-10 18:03:03 -04:00
```js
2020-12-16 00:37:30 -07:00
assert.strictEqual(euler425(), 46479497324);
2018-10-10 18:03:03 -04:00
```
2021-01-13 03:31:00 +01:00
# --seed--
## --seed-contents--
```js
function euler425() {
return true;
}
euler425();
```
2020-12-16 00:37:30 -07:00
# --solutions--
2020-08-13 17:24:35 +02:00
2021-01-13 03:31:00 +01:00
```js
// solution required
```