2018-09-30 23:01:58 +01:00
---
id: 5900f3e91000cf542c50fefc
title: 'Problem 125: Palindromic sums'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 301752
2021-01-13 03:31:00 +01:00
dashedName: problem-125-palindromic-sums
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2021-07-16 21:38:37 +02:00
The palindromic number 595 is interesting because it can be written as the sum of consecutive squares: $6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2$.
2018-09-30 23:01:58 +01:00
2021-07-16 21:38:37 +02:00
There are exactly eleven palindromes below one-thousand that can be written as consecutive square sums, and the sum of these palindromes is 4164. Note that $1 = 0^2 + 1^2$ has not been included as this problem is concerned with the squares of positive integers.
2018-09-30 23:01:58 +01:00
2021-07-16 21:38:37 +02:00
Find the sum of all the numbers less than $10^8$ that are both palindromic and can be written as the sum of consecutive squares.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2021-07-16 21:38:37 +02:00
`palindromicSums()` should return `2906969179` .
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
2021-07-16 21:38:37 +02:00
assert.strictEqual(palindromicSums(), 2906969179);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
2021-07-16 21:38:37 +02:00
function palindromicSums() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
2021-07-16 21:38:37 +02:00
palindromicSums();
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```