2018-09-30 23:01:58 +01:00
---
id: 5900f3f21000cf542c50ff05
title: 'Problem 134: Prime pair connection'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 301762
2021-01-13 03:31:00 +01:00
dashedName: problem-134-prime-pair-connection
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2021-07-16 21:38:37 +02:00
Consider the consecutive primes $p_1 = 19$ and $p_2 = 23$. It can be verified that 1219 is the smallest number such that the last digits are formed by $p_1$ whilst also being divisible by $p_2$.
2018-09-30 23:01:58 +01:00
2021-07-16 21:38:37 +02:00
In fact, with the exception of $p_1 = 3$ and $p_2 = 5$, for every pair of consecutive primes, $p_2 > p_1$, there exist values of $n$ for which the last digits are formed by $p_1$ and $n$ is divisible by $p_2$. Let $S$ be the smallest of these values of $n$.
2018-09-30 23:01:58 +01:00
2021-07-16 21:38:37 +02:00
Find $\sum{S}$ for every pair of consecutive primes with $5 ≤ p_1 ≤ 1000000$.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2021-07-16 21:38:37 +02:00
`primePairConnection()` should return `18613426663617120` .
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
2021-07-16 21:38:37 +02:00
assert.strictEqual(primePairConnection(), 18613426663617120);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
2021-07-16 21:38:37 +02:00
function primePairConnection() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
2021-07-16 21:38:37 +02:00
primePairConnection();
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```