2018-09-30 23:01:58 +01:00
---
id: 5900f3f31000cf542c50ff06
title: 'Problem 135: Same differences'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 301763
2021-01-13 03:31:00 +01:00
dashedName: problem-135-same-differences
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2021-07-16 21:38:37 +02:00
Given the positive integers, $x$, $y$, and $z$, are consecutive terms of an arithmetic progression, the least value of the positive integer, $n$, for which the equation, $x^2 − y^2 − z^2 = n$, has exactly two solutions is $n = 27$:
2020-11-27 19:02:05 +01:00
2021-07-16 21:38:37 +02:00
$$34^2 − 27^2 − 20^2 = 12^2 − 9^2 − 6^2 = 27$$
2018-09-30 23:01:58 +01:00
2021-07-16 21:38:37 +02:00
It turns out that $n = 1155$ is the least value which has exactly ten solutions.
2018-09-30 23:01:58 +01:00
2021-07-16 21:38:37 +02:00
How many values of $n$ less than one million have exactly ten distinct solutions?
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2021-07-16 21:38:37 +02:00
`sameDifferences()` should return `4989` .
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
2021-07-16 21:38:37 +02:00
assert.strictEqual(sameDifferences(), 4989);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
2021-07-16 21:38:37 +02:00
function sameDifferences() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
2021-07-16 21:38:37 +02:00
sameDifferences();
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```