Files

53 lines
982 B
Markdown
Raw Permalink Normal View History

---
id: 5900f48d1000cf542c50ff9f
title: 'Problem 288: An enormous factorial'
challengeType: 5
forumTopicId: 301939
dashedName: problem-288-an-enormous-factorial
---
# --description--
For any prime $p$ the number $N(p,q)$ is defined by $N(p,q) = \sum_{n=0}^q T_n \times p^n$ with $T_n$ generated by the following random number generator:
$$\begin{align}
& S_0 = 290797 \\\\
& S_{n + 1} = {S_n}^2\bmod 50\\,515\\,093 \\\\
& T_n = S_n\bmod p
\end{align}$$
Let $Nfac(p,q)$ be the factorial of $N(p,q)$.
Let $NF(p,q)$ be the number of factors $p$ in $Nfac(p,q)$.
You are given that $NF(3,10000) \bmod 3^{20} = 624\\,955\\,285$.
Find $NF(61,{10}^7)\bmod {61}^{10}$.
# --hints--
`enormousFactorial()` should return `605857431263982000`.
```js
assert.strictEqual(enormousFactorial(), 605857431263982000);
```
# --seed--
## --seed-contents--
```js
function enormousFactorial() {
return true;
}
enormousFactorial();
```
# --solutions--
```js
// solution required
```