2018-09-30 23:01:58 +01:00
---
id: 5900f48d1000cf542c50ff9f
title: 'Problem 288: An enormous factorial'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 301939
2021-01-13 03:31:00 +01:00
dashedName: problem-288-an-enormous-factorial
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2018-09-30 23:01:58 +01:00
2021-07-22 05:38:46 +02:00
For any prime $p$ the number $N(p,q)$ is defined by $N(p,q) = \sum_{n=0}^q T_n \times p^n$ with $T_n$ generated by the following random number generator:
2018-09-30 23:01:58 +01:00
2021-07-22 05:38:46 +02:00
$$\begin{align}
& S_0 = 290797 \\\\
& S_{n + 1} = {S_n}^2\bmod 50\\,515\\,093 \\\\
& T_n = S_n\bmod p
\end{align}$$
2018-09-30 23:01:58 +01:00
2021-07-22 05:38:46 +02:00
Let $Nfac(p,q)$ be the factorial of $N(p,q)$.
2018-09-30 23:01:58 +01:00
2021-07-22 05:38:46 +02:00
Let $NF(p,q)$ be the number of factors $p$ in $Nfac(p,q)$.
2018-09-30 23:01:58 +01:00
2021-07-22 05:38:46 +02:00
You are given that $NF(3,10000) \bmod 3^{20} = 624\\,955\\,285$.
2018-09-30 23:01:58 +01:00
2021-07-22 05:38:46 +02:00
Find $NF(61,{10}^7)\bmod {61}^{10}$.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2021-07-22 05:38:46 +02:00
`enormousFactorial()` should return `605857431263982000` .
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
2021-07-22 05:38:46 +02:00
assert.strictEqual(enormousFactorial(), 605857431263982000);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
2021-07-22 05:38:46 +02:00
function enormousFactorial() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
2021-07-22 05:38:46 +02:00
enormousFactorial();
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```