Files
gikf 47fc3c6761 fix(curriculum): clean-up Project Euler 281-300 (#42922)
* fix: clean-up Project Euler 281-300

* fix: missing image extension

* fix: missing power

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

* fix: missing subscript

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-22 12:38:46 +09:00

982 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f48d1000cf542c50ff9f Problem 288: An enormous factorial 5 301939 problem-288-an-enormous-factorial

--description--

For any prime p the number N(p,q) is defined by N(p,q) = \sum_{n=0}^q T_n \times p^n with T_n generated by the following random number generator:

$$\begin{align} & S_0 = 290797 \\ & S_{n + 1} = {S_n}^2\bmod 50\,515\,093 \\ & T_n = S_n\bmod p \end{align}$$

Let Nfac(p,q) be the factorial of N(p,q).

Let NF(p,q) be the number of factors p in Nfac(p,q).

You are given that NF(3,10000) \bmod 3^{20} = 624\\,955\\,285.

Find NF(61,{10}^7)\bmod {61}^{10}.

--hints--

enormousFactorial() should return 605857431263982000.

assert.strictEqual(enormousFactorial(), 605857431263982000);

--seed--

--seed-contents--

function enormousFactorial() {

  return true;
}

enormousFactorial();

--solutions--

// solution required