2018-09-30 23:01:58 +01:00
---
id: 5900f4c71000cf542c50ffd8
title: 'Problem 346: Strong Repunits'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 302005
2021-01-13 03:31:00 +01:00
dashedName: problem-346-strong-repunits
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2018-09-30 23:01:58 +01:00
2021-07-29 19:14:22 +02:00
The number 7 is special, because 7 is 111 written in base 2, and 11 written in base 6 (i.e. $7_{10} = {11}_6 = {111}_2$). In other words, 7 is a repunit in at least two bases $b > 1$.
2018-09-30 23:01:58 +01:00
2021-07-29 19:14:22 +02:00
We shall call a positive integer with this property a strong repunit. It can be verified that there are 8 strong repunits below 50: {1, 7, 13, 15, 21, 31, 40, 43}. Furthermore, the sum of all strong repunits below 1000 equals 15864.
2018-09-30 23:01:58 +01:00
2021-07-29 19:14:22 +02:00
Find the sum of all strong repunits below ${10}^{12}$.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2021-07-29 19:14:22 +02:00
`strongRepunits()` should return `336108797689259260` .
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
2021-07-29 19:14:22 +02:00
assert.strictEqual(strongRepunits(), 336108797689259260);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
2021-07-29 19:14:22 +02:00
function strongRepunits() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
2021-07-29 19:14:22 +02:00
strongRepunits();
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```