* fix: clean-up Project Euler 341-360 * fix: improve wording Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
944 B
944 B
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4c71000cf542c50ffd8 | Problem 346: Strong Repunits | 5 | 302005 | problem-346-strong-repunits |
--description--
The number 7 is special, because 7 is 111 written in base 2, and 11 written in base 6 (i.e. 7_{10} = {11}_6 = {111}_2
). In other words, 7 is a repunit in at least two bases b > 1
.
We shall call a positive integer with this property a strong repunit. It can be verified that there are 8 strong repunits below 50: {1, 7, 13, 15, 21, 31, 40, 43}. Furthermore, the sum of all strong repunits below 1000 equals 15864.
Find the sum of all strong repunits below {10}^{12}
.
--hints--
strongRepunits()
should return 336108797689259260
.
assert.strictEqual(strongRepunits(), 336108797689259260);
--seed--
--seed-contents--
function strongRepunits() {
return true;
}
strongRepunits();
--solutions--
// solution required