Files

45 lines
903 B
Markdown
Raw Permalink Normal View History

---
id: 5900f4f91000cf542c51000c
title: 'Problem 397: Triangle on parabola'
challengeType: 5
forumTopicId: 302062
dashedName: problem-397-triangle-on-parabola
---
# --description--
On the parabola $y = \frac{x^2}{k}$, three points $A(a, \frac{a^2}{k})$, $B(b, \frac{b^2}{k})$ and $C(c, \frac{c^2}{k})$ are chosen.
Let $F(K, X)$ be the number of the integer quadruplets $(k, a, b, c)$ such that at least one angle of the triangle $ABC$ is 45°, with $1 ≤ k ≤ K$ and $-X ≤ a < b < c ≤ X$.
For example, $F(1, 10) = 41$ and $F(10, 100) = 12\\,492$.
Find $F({10}^6, {10}^9)$.
# --hints--
`triangleOnParabola()` should return `141630459461893730`.
```js
assert.strictEqual(triangleOnParabola(), 141630459461893730);
```
# --seed--
## --seed-contents--
```js
function triangleOnParabola() {
return true;
}
triangleOnParabola();
```
# --solutions--
```js
// solution required
```