2018-09-30 23:01:58 +01:00
---
id: 5900f4f91000cf542c51000c
title: 'Problem 397: Triangle on parabola'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 302062
2021-01-13 03:31:00 +01:00
dashedName: problem-397-triangle-on-parabola
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2018-09-30 23:01:58 +01:00
2021-07-30 16:59:29 +02:00
On the parabola $y = \frac{x^2}{k}$, three points $A(a, \frac{a^2}{k})$, $B(b, \frac{b^2}{k})$ and $C(c, \frac{c^2}{k})$ are chosen.
2018-09-30 23:01:58 +01:00
2021-07-30 16:59:29 +02:00
Let $F(K, X)$ be the number of the integer quadruplets $(k, a, b, c)$ such that at least one angle of the triangle $ABC$ is 45°, with $1 ≤ k ≤ K$ and $-X ≤ a < b < c ≤ X$.
2018-09-30 23:01:58 +01:00
2021-07-30 16:59:29 +02:00
For example, $F(1, 10) = 41$ and $F(10, 100) = 12\\,492$.
Find $F({10}^6, {10}^9)$.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2021-07-30 16:59:29 +02:00
`triangleOnParabola()` should return `141630459461893730` .
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
2021-07-30 16:59:29 +02:00
assert.strictEqual(triangleOnParabola(), 141630459461893730);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
2021-07-30 16:59:29 +02:00
function triangleOnParabola() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
2021-07-30 16:59:29 +02:00
triangleOnParabola();
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```