* fix: clean-up Project Euler 381-400 * fix: missing image extension * fix: missing subscripts Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
903 B
903 B
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4f91000cf542c51000c | Problem 397: Triangle on parabola | 5 | 302062 | problem-397-triangle-on-parabola |
--description--
On the parabola y = \frac{x^2}{k}
, three points A(a, \frac{a^2}{k})
, B(b, \frac{b^2}{k})
and C(c, \frac{c^2}{k})
are chosen.
Let F(K, X)
be the number of the integer quadruplets (k, a, b, c)
such that at least one angle of the triangle ABC
is 45°, with 1 ≤ k ≤ K
and -X ≤ a < b < c ≤ X
.
For example, F(1, 10) = 41
and F(10, 100) = 12\\,492
.
Find F({10}^6, {10}^9)
.
--hints--
triangleOnParabola()
should return 141630459461893730
.
assert.strictEqual(triangleOnParabola(), 141630459461893730);
--seed--
--seed-contents--
function triangleOnParabola() {
return true;
}
triangleOnParabola();
--solutions--
// solution required