2018-09-30 23:01:58 +01:00
---
id: 5900f4fd1000cf542c51000f
title: 'Problem 401: Sum of squares of divisors'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 302069
2021-01-13 03:31:00 +01:00
dashedName: problem-401-sum-of-squares-of-divisors
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2018-09-30 23:01:58 +01:00
2021-07-29 19:48:24 +02:00
The divisors of 6 are 1, 2, 3 and 6.
2018-09-30 23:01:58 +01:00
2021-07-29 19:48:24 +02:00
The sum of the squares of these numbers is $1 + 4 + 9 + 36 = 50$.
2018-09-30 23:01:58 +01:00
2021-07-29 19:48:24 +02:00
Let $\sigma_2(n)$ represent the sum of the squares of the divisors of $n$. Thus $\sigma_2(6) = 50$.
2018-09-30 23:01:58 +01:00
2021-07-29 19:48:24 +02:00
Let $\Sigma_2$ represent the summatory function of $\sigma_2$, that is $\Sigma_2(n) = \sum \sigma_2(i)$ for $i=1$ to $n$. The first 6 values of $\Sigma_2$ are: 1, 6, 16, 37, 63 and 113.
2018-09-30 23:01:58 +01:00
2021-07-29 19:48:24 +02:00
Find $\Sigma_2({10}^{15})$ modulo ${10}^9$.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2021-07-29 19:48:24 +02:00
`sumOfSquaresDivisors()` should return `281632621` .
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
2021-07-29 19:48:24 +02:00
assert.strictEqual(sumOfSquaresDivisors(), 281632621);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
2021-07-29 19:48:24 +02:00
function sumOfSquaresDivisors() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
2021-07-29 19:48:24 +02:00
sumOfSquaresDivisors();
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```