Files

49 lines
932 B
Markdown
Raw Permalink Normal View History

---
id: 5900f5061000cf542c510017
title: 'Problem 409: Nim Extreme'
challengeType: 5
forumTopicId: 302077
dashedName: problem-409-nim-extreme
---
# --description--
Let $n$ be a positive integer. Consider nim positions where:
- There are $n$ non-empty piles.
- Each pile has size less than $2^n$.
- No two piles have the same size.
Let $W(n)$ be the number of winning nim positions satisfying the above conditions (a position is winning if the first player has a winning strategy).
For example, $W(1) = 1$, $W(2) = 6$, $W(3) = 168$, $W(5) = 19\\,764\\,360$ and $W(100)\bmod 1\\,000\\,000\\,007 = 384\\,777\\,056$.
Find $W(10\\,000\\,000)\bmod 1\\,000\\,000\\,007$.
# --hints--
`nimExtreme()` should return `253223948`.
```js
assert.strictEqual(nimExtreme(), 253223948);
```
# --seed--
## --seed-contents--
```js
function nimExtreme() {
return true;
}
nimExtreme();
```
# --solutions--
```js
// solution required
```