2018-09-30 23:01:58 +01:00
---
id: 5900f50d1000cf542c51001f
title: 'Problem 417: Reciprocal cycles II'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 302086
2021-01-13 03:31:00 +01:00
dashedName: problem-417-reciprocal-cycles-ii
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2018-09-30 23:01:58 +01:00
A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:
2021-07-29 19:48:24 +02:00
$$\begin{align}
& \frac{1}{2} = 0.5 \\\\
& \frac{1}{3} = 0.(3) \\\\
& \frac{1}{4} = 0.25 \\\\
& \frac{1}{5} = 0.2 \\\\
& \frac{1}{6} = 0.1(6) \\\\
& \frac{1}{7} = 0.(142857) \\\\
& \frac{1}{8} = 0.125 \\\\
& \frac{1}{9} = 0.(1) \\\\
& \frac{1}{10} = 0.1 \\\\
\end{align}$$
Where $0.1(6)$ means $0.166666\ldots$, and has a 1-digit recurring cycle. It can be seen that $\frac{1}{7}$ has a 6-digit recurring cycle.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
Unit fractions whose denominator has no other prime factors than 2 and/or 5 are not considered to have a recurring cycle. We define the length of the recurring cycle of those unit fractions as 0.
2018-09-30 23:01:58 +01:00
2021-07-29 19:48:24 +02:00
Let $L(n)$ denote the length of the recurring cycle of $\frac{1}{n}$. You are given that $\sum L(n)$ for $3 ≤ n ≤ 1\\,000\\,000$ equals $55\\,535\\,191\\,115$.
2018-09-30 23:01:58 +01:00
2021-07-29 19:48:24 +02:00
Find $\sum L(n)$ for $3 ≤ n ≤ 100\\,000\\,000$.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2021-07-29 19:48:24 +02:00
`reciprocalCyclesTwo()` should return `446572970925740` .
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
2021-07-29 19:48:24 +02:00
assert.strictEqual(reciprocalCyclesTwo(), 446572970925740);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
2021-07-29 19:48:24 +02:00
function reciprocalCyclesTwo() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
2021-07-29 19:48:24 +02:00
reciprocalCyclesTwo();
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```