1.4 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f50d1000cf542c51001f | Problem 417: Reciprocal cycles II | 5 | 302086 | problem-417-reciprocal-cycles-ii |
--description--
A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:
$$\begin{align} & \frac{1}{2} = 0.5 \\ & \frac{1}{3} = 0.(3) \\ & \frac{1}{4} = 0.25 \\ & \frac{1}{5} = 0.2 \\ & \frac{1}{6} = 0.1(6) \\ & \frac{1}{7} = 0.(142857) \\ & \frac{1}{8} = 0.125 \\ & \frac{1}{9} = 0.(1) \\ & \frac{1}{10} = 0.1 \\ \end{align}$$
Where 0.1(6)
means 0.166666\ldots
, and has a 1-digit recurring cycle. It can be seen that \frac{1}{7}
has a 6-digit recurring cycle.
Unit fractions whose denominator has no other prime factors than 2 and/or 5 are not considered to have a recurring cycle. We define the length of the recurring cycle of those unit fractions as 0.
Let L(n)
denote the length of the recurring cycle of \frac{1}{n}
. You are given that \sum L(n)
for 3 ≤ n ≤ 1\\,000\\,000
equals 55\\,535\\,191\\,115
.
Find \sum L(n)
for 3 ≤ n ≤ 100\\,000\\,000
.
--hints--
reciprocalCyclesTwo()
should return 446572970925740
.
assert.strictEqual(reciprocalCyclesTwo(), 446572970925740);
--seed--
--seed-contents--
function reciprocalCyclesTwo() {
return true;
}
reciprocalCyclesTwo();
--solutions--
// solution required