2018-09-30 23:01:58 +01:00
---
id: 5900f50f1000cf542c510021
title: 'Problem 418: Factorisation triples'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 302087
2021-01-13 03:31:00 +01:00
dashedName: problem-418-factorisation-triples
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2021-07-29 19:48:24 +02:00
Let $n$ be a positive integer. An integer triple ($a$, $b$, $c$) is called a factorisation triple of $n$ if:
2018-09-30 23:01:58 +01:00
2021-07-29 19:48:24 +02:00
- $1 ≤ a ≤ b ≤ c$
- $a \times b \times c = n$.
2018-09-30 23:01:58 +01:00
2021-07-29 19:48:24 +02:00
Define $f(n)$ to be $a + b + c$ for the factorisation triple ($a$, $b$, $c$) of $n$ which minimises $\frac{c}{a}$. One can show that this triple is unique.
2018-09-30 23:01:58 +01:00
2021-07-29 19:48:24 +02:00
For example, $f(165) = 19$, $f(100\\,100) = 142$ and $f(20!) = 4\\,034\\,872$.
2018-09-30 23:01:58 +01:00
2021-07-29 19:48:24 +02:00
Find $f(43!)$.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2021-07-29 19:48:24 +02:00
`factorisationTriples()` should return `1177163565297340400` .
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
2021-07-29 19:48:24 +02:00
assert.strictEqual(factorisationTriples(), 1177163565297340400);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
2021-07-29 19:48:24 +02:00
function factorisationTriples() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
2021-07-29 19:48:24 +02:00
factorisationTriples();
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```