Files

66 lines
1.7 KiB
Markdown
Raw Permalink Normal View History

---
id: 5900f5411000cf542c510052
title: 'Problem 467: Superinteger'
challengeType: 5
forumTopicId: 302142
dashedName: problem-467-superinteger
---
# --description--
An integer $s$ is called a superinteger of another integer $n$ if the digits of $n$ form a subsequence of the digits of $s$.
For example, 2718281828 is a superinteger of 18828, while 314159 is not a superinteger of 151.
Let $p(n)$ be the $n$th prime number, and let $c(n)$ be the $n$th composite number. For example, $p(1) = 2$, $p(10) = 29$, $c(1) = 4$ and $c(10) = 18$.
$$\begin{align}
& \\{p(i) : i ≥ 1\\} = \\{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, \ldots \\} \\\\
& \\{c(i) : i ≥ 1\\} = \\{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, \ldots \\}
\end{align}$$
Let $P^D$ the sequence of the digital roots of $\\{p(i)\\}$ ($C^D$ is defined similarly for $\\{c(i)\\}$):
$$\begin{align}
& P^D = \\{2, 3, 5, 7, 2, 4, 8, 1, 5, 2, \ldots \\} \\\\
& C^D = \\{4, 6, 8, 9, 1, 3, 5, 6, 7, 9, \ldots \\}
\end{align}$$
Let $P_n$ be the integer formed by concatenating the first $n$ elements of $P^D$ ($C_n$ is defined similarly for $C^D$).
$$\begin{align}
& P_{10} = 2\\,357\\,248\\,152 \\\\
& C_{10} = 4\\,689\\,135\\,679
\end{align}$$
Let $f(n)$ be the smallest positive integer that is a common superinteger of $P_n$ and $C_n$. For example, $f(10) = 2\\,357\\,246\\,891\\,352\\,679$, and $f(100)\bmod 1\\,000\\,000\\,007 = 771\\,661\\,825$.
Find $f(10\\,000)\bmod 1\\,000\\,000\\,007$.
# --hints--
`superinteger()` should return `775181359`.
```js
assert.strictEqual(superinteger(), 775181359);
```
# --seed--
## --seed-contents--
```js
function superinteger() {
return true;
}
superinteger();
```
# --solutions--
```js
// solution required
```