Lascia che $S(A)$ rappresenti la somma degli elementi nel set A di dimensione n. La chiameremo una somma speciale se, per due sottoinsiemi disgiunti e non vuoti, B e C, le seguenti proprietà sono vere:
Se $S(A)$ è minimizzata per un dato n, la chiameremo somma speciale di un set ottimale. Le prime cinque somme speciali di un set ottimale sono date sotto.
Sembra che per un dato set ottimale, $A = \\{a_1, a_2, \ldots, a_n\\}$, il successivo set ottimale è della forma $B = \\{b, a_1 + b, a_2 + b, \ldots, a_n + b\\}$, dove b è l'elemento "di mezzo" della riga precedente.
Apllicando la "regola" ci aspetteremmo il set ottimale per $n = 6$ sia $A = \\{11, 17, 20, 22, 23, 24\\}$, con $S(A) = 117$. Invece, questo non è il set ottimale, visto che abbiamo semplicemente applicato un algoritmo per ottenere un set quasi ottimale. Il set ottimale per $n = 6$ è $A = \\{11, 18, 19, 20, 22, 25\\}$, con $S(A) = 115$ e la stringa set corrispondente: `111819202225`.