2021-06-15 00:49:18 -07:00
---
id: 5900f4491000cf542c50ff5c
2022-03-01 00:52:39 +05:30
title: 'Problema 221: Interi Alessandrini'
2021-06-15 00:49:18 -07:00
challengeType: 5
forumTopicId: 301864
dashedName: problem-221-alexandrian-integers
---
# --description--
2022-03-01 00:52:39 +05:30
Chiameremo un intero positivo $A$ un "intero Alessandrino", se esistono degli interi $p$, $q$, $r$ tali che:
2021-06-15 00:49:18 -07:00
2022-03-01 00:52:39 +05:30
$$A = p \times q \times r$$
2021-06-15 00:49:18 -07:00
2022-03-01 00:52:39 +05:30
e
2021-06-15 00:49:18 -07:00
2022-03-01 00:52:39 +05:30
$$$\frac{1}{A} = \frac{1}{p} + \frac{1}{q} + \frac{1}{r}$$
Ad esempio, 630 è un numero intero Alessandrino ($p = 5$, $q = − 7$, $r = − 18$). Infatti 630 è il 6° numero intero Alessandrino, i primi 6 interi Alessandrini sono: 6, 42, 120, 156, 420 e 630.
Trova il 150000esimo intero Alessandrino.
2021-06-15 00:49:18 -07:00
# --hints--
2022-03-01 00:52:39 +05:30
`alexandrianIntegers()` dovrebbe restituire `1884161251122450` .
2021-06-15 00:49:18 -07:00
```js
2022-03-01 00:52:39 +05:30
assert.strictEqual(alexandrianIntegers(), 1884161251122450);
2021-06-15 00:49:18 -07:00
```
# --seed--
## --seed-contents--
```js
2022-03-01 00:52:39 +05:30
function alexandrianIntegers() {
2021-06-15 00:49:18 -07:00
return true;
}
2022-03-01 00:52:39 +05:30
alexandrianIntegers();
2021-06-15 00:49:18 -07:00
```
# --solutions--
```js
// solution required
```