Files

65 lines
1.9 KiB
Markdown
Raw Permalink Normal View History

---
id: 5900f4531000cf542c50ff65
title: 'Problema 230: Parole di Fibonacci'
challengeType: 5
forumTopicId: 301874
dashedName: problem-230-fibonacci-words
---
# --description--
Per due stringhe di cifre, $A$ e $B$, definiamo $F_{A,B}$ come la sequenza ($A, B, AB, BAB, ABBAB, \ldots$) in cui ogni termine è la concatenazione dei due precedenti.
Inoltre, definiamo $D_{A,B}(n)$ come la $n$-sima cifra nel primo termine di $F_{A,B}$ che contiene almeno $n$ cifre.
Esempio:
Sia $A = 1\\,415\\,926\\,535$, $B = 8\\,979\\,323\\,846$. Vogliamo trovare, diciamo, $D_{A,B}(35)$.
I primi termini di $F_{A,B}$ sono:
$$\begin{align} & 1\\,415\\,926\\,535 \\\\
& 8\\,979\\,323\\,846 \\\\ & 14\\,159\\,265\\,358\\,979\\,323\\,846 \\\\
& 897\\,932\\,384\\,614\\,159\\,265\\,358\\,979\\,323\\,846 \\\\ & 14\\,159\\,265\\,358\\,979\\,323\\,846\\,897\\,932\\,384\\,614\\,15\color{red}{9}\\,265\\,358\\,979\\,323\\,846 \end{align}$$
Allora $D_{A,B}(35)$ è la ${35}$-sima cifra nel qunto termine, che è 9.
Ora utilizziamo per $A$ le prime 100 cifre di $π$ dietro il punto decimale:
$$\begin{align} & 14\\,159\\,265\\,358\\,979\\,323\\,846\\,264\\,338\\,327\\,950\\,288\\,419\\,716\\,939\\,937\\,510 \\\\
& 58\\,209\\,749\\,445\\,923\\,078\\,164\\,062\\,862\\,089\\,986\\,280\\,348\\,253\\,421\\,170\\,679 \end{align}$$
e per $B$ le prossime cento cifre:
$$\begin{align} & 82\\,148\\,086\\,513\\,282\\,306\\,647\\,093\\,844\\,609\\,550\\,582\\,231\\,725\\,359\\,408\\,128 \\\\
& 48\\,111\\,745\\,028\\,410\\,270\\,193\\,852\\,110\\,555\\,964\\,462\\,294\\,895\\,493\\,038\\,196 \end{align}$$
Trova $\sum_{n = 0, 1, \ldots, 17} {10}^n × D_{A,B}((127 + 19n) × 7^n)$.
# --hints--
`fibonacciWords()` dovrebbe restituire `850481152593119200`.
```js
assert.strictEqual(fibonacciWords(), 850481152593119200);
```
# --seed--
## --seed-contents--
```js
function fibonacciWords() {
return true;
}
fibonacciWords();
```
# --solutions--
```js
// solution required
```