2021-06-15 00:49:18 -07:00
|
|
|
|
---
|
|
|
|
|
id: 5900f4531000cf542c50ff66
|
2022-03-01 00:52:39 +05:30
|
|
|
|
title: 'Problema 231: La fattorizzazione prima dei coefficienti binomiali'
|
2021-06-15 00:49:18 -07:00
|
|
|
|
challengeType: 5
|
|
|
|
|
forumTopicId: 301875
|
|
|
|
|
dashedName: problem-231-the-prime-factorisation-of-binomial-coefficients
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
# --description--
|
|
|
|
|
|
2022-03-01 00:52:39 +05:30
|
|
|
|
Il coefficiente binomiale $\displaystyle\binom{10}{3} = 120$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
2022-03-01 00:52:39 +05:30
|
|
|
|
$120 = 2^3 × 3 × 5 = 2 × 2 × 2 × 3 × 5$, e $2 + 2 + 2 + 3 + 5 = 14$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
2022-03-01 00:52:39 +05:30
|
|
|
|
Quindi la somma dei termini nella fattorizzazione prima di $\displaystyle\binom{10}{3}$ è $14$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
2022-03-01 00:52:39 +05:30
|
|
|
|
Trova la somma dei termini nella fattorizzazione prima di $\binom{20\\,000\\,000}{15\\,000\\,000}$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
|
|
# --hints--
|
|
|
|
|
|
2022-03-01 00:52:39 +05:30
|
|
|
|
`primeFactorisation()` dovrebbe restituire `7526965179680`.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
|
|
```js
|
2022-03-01 00:52:39 +05:30
|
|
|
|
assert.strictEqual(primeFactorisation(), 7526965179680);
|
2021-06-15 00:49:18 -07:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
# --seed--
|
|
|
|
|
|
|
|
|
|
## --seed-contents--
|
|
|
|
|
|
|
|
|
|
```js
|
2022-03-01 00:52:39 +05:30
|
|
|
|
function primeFactorisation() {
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
2022-03-01 00:52:39 +05:30
|
|
|
|
primeFactorisation();
|
2021-06-15 00:49:18 -07:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
# --solutions--
|
|
|
|
|
|
|
|
|
|
```js
|
|
|
|
|
// solution required
|
|
|
|
|
```
|