2021-06-15 00:49:18 -07:00
---
id: 5900f48d1000cf542c50ff9f
2022-03-01 21:39:26 +05:30
title: 'Problema 288: Un fattoriale enorme'
2021-06-15 00:49:18 -07:00
challengeType: 5
forumTopicId: 301939
dashedName: problem-288-an-enormous-factorial
---
# --description--
2022-03-01 21:39:26 +05:30
Per ogni numero primo $p$ il numero $N(p, q)$ è definito da $N(p,q) = \sum_{n=0}^q T_n \times p^n$ con $T_n$ generato dal seguente generatore casuale di numeri:
2021-06-15 00:49:18 -07:00
2022-03-31 22:31:59 +05:30
$$\begin{align} & S_0 = 290797 \\\\
& S_{n + 1} = {S_n}^2\bmod 50\\,515\\,093 \\\\ & T_n = S_n\bmod p \end{align}$$
2021-06-15 00:49:18 -07:00
2022-03-01 21:39:26 +05:30
Sia $Nfac(p,q)$ il fattoriale di $N(p,q)$.
2021-06-15 00:49:18 -07:00
2022-03-01 21:39:26 +05:30
Sia $NF(p,q)$ il numero di fattori $p$ in $Nfac(p,q)$.
2021-06-15 00:49:18 -07:00
2022-03-01 21:39:26 +05:30
Ti è dato che $NF(3,10000) \bmod 3^{20} = 624\\,955\\,285$.
2021-06-15 00:49:18 -07:00
2022-03-01 21:39:26 +05:30
Trova $NF(61,{10}^7)\bmod {61}^{10}$.
2021-06-15 00:49:18 -07:00
# --hints--
2022-03-01 21:39:26 +05:30
`enormousFactorial()` dovrebbe restituire `605857431263982000` .
2021-06-15 00:49:18 -07:00
```js
2022-03-01 21:39:26 +05:30
assert.strictEqual(enormousFactorial(), 605857431263982000);
2021-06-15 00:49:18 -07:00
```
# --seed--
## --seed-contents--
```js
2022-03-01 21:39:26 +05:30
function enormousFactorial() {
2021-06-15 00:49:18 -07:00
return true;
}
2022-03-01 21:39:26 +05:30
enormousFactorial();
2021-06-15 00:49:18 -07:00
```
# --solutions--
```js
// solution required
```