2021-06-15 00:49:18 -07:00
---
id: 5900f4e61000cf542c50fff9
2022-03-02 20:56:06 +05:30
title: 'Problema 378: tripli triangoli'
2021-06-15 00:49:18 -07:00
challengeType: 5
forumTopicId: 302040
dashedName: problem-378-triangle-triples
---
# --description--
2022-03-02 20:56:06 +05:30
Sia $T(n)$ l'$n$-simo numero triangolare, quindi $T(n) = \frac{n(n + 1)}{2}$.
2021-06-15 00:49:18 -07:00
2022-03-02 20:56:06 +05:30
Sia $dT(n)$ il numero di divisori di $T(n)$. Esempio: $T(7) = 28$ e $dT(7) = 6$.
2021-06-15 00:49:18 -07:00
2022-03-02 20:56:06 +05:30
Sia $Tr(n)$ il numero di triplette ($i$, $j$, $k$) per cui $1 ≤ i < j < k ≤ n$ e $dT(i) > dT(j) > dT(k)$. $Tr(20) = 14$, $Tr(100) = 5\\,772$ e $Tr(1000) = 11\\,174\\,776$.
2021-06-15 00:49:18 -07:00
2022-03-02 20:56:06 +05:30
Trova $Tr(60\\,000\\,000)$. Dai le ultime 18 cifre della tua risposta.
2021-06-15 00:49:18 -07:00
# --hints--
2022-03-02 20:56:06 +05:30
`triangleTriples()` dovrebbe restituire `147534623725724700` .
2021-06-15 00:49:18 -07:00
```js
2022-03-02 20:56:06 +05:30
assert.strictEqual(triangleTriples(), 147534623725724700);
2021-06-15 00:49:18 -07:00
```
# --seed--
## --seed-contents--
```js
2022-03-02 20:56:06 +05:30
function triangleTriples() {
2021-06-15 00:49:18 -07:00
return true;
}
2022-03-02 20:56:06 +05:30
triangleTriples();
2021-06-15 00:49:18 -07:00
```
# --solutions--
```js
// solution required
```