Vamos $S(A)$ representar a soma dos elementos no conjunto A, de tamanho n. Vamos chamá-la de uma soma especial definida se, para dois subconjuntos disjuntos, B e C, as seguintes propriedades são verdadeiras:
Se $S(A)$ for minimizado por um determinado n, vamos chamar de um conjunto de soma especial ideal. Os primeiros cinco conjuntos de somas especiais ideais são fornecidos abaixo.
Parece que, para um determinado conjunto ideal, $A = \\{a_1, a_2, \ldots, a_n\\}$, o próximo conjunto ideal é do formato $B = \\{b, a_1 + b, a_2 + b, \ldots, a_n + b\\}$, onde b é o elemento do "meio" na linha anterior.
Aplicando esta "regra", esperaríamos que o conjunto ideal para $n = 6$ fosse $A = \\{11, 17, 20, 22, 23, 24\\}$, com $S(A) = 117$. No entanto, este não é o conjunto ideal, já que apenas aplicamos um algoritmo para fornecer um conjunto quase ideal. O conjunto ideal para $n = 6$ é $A = \\{11, 18, 19, 20, 22, 25\\}$, com $S(A) = 115$ e string correspondente do conjunto: `111819202225`.