2021-06-15 00:49:18 -07:00
---
id: 5900f3e81000cf542c50fefb
2021-11-04 07:53:18 -07:00
title: 'Problema 124: Radicais ordenados'
2021-06-15 00:49:18 -07:00
challengeType: 5
forumTopicId: 301751
dashedName: problem-124-ordered-radicals
---
# --description--
2021-11-30 06:06:52 -08:00
O radical de $n$, $rad(n)$, é o produto dos fatores primos distintos de $n$. Por exemplo, $504 = 2^3 × 3^2 × 7$, então $rad(504) = 2 × 3 × 7 = 42$.
2021-11-04 07:53:18 -07:00
Se calcularmos $rad(n)$ para $1 ≤ n ≤ 10$ e, em seguida, ordená-los em $rad(n)$, e ordená-los novamente em $n$ se os valores dos radicais forem iguais, obtemos:
< div style = "text-align: center;" >
< table cellpadding = "2" cellspacing = "0" border = "0" align = "center" >
< tbody >
< tr >
< td colspan = "2" > $Nao ordenados$< / td >
< td > < / td >
< td colspan = "3" > $Ordenados$< / td >
< / tr >
< tr >
< td > $n$< / td >
< td > $rad(n)$< / td >
< td > < / td >
< td > $n$< / td >
< td > $rad(n)$< / td >
< td > $k$< / td >
< / tr >
< tr >
< td > 1< / td >
< td > 1< / td >
< td > < / td >
< td > 1< / td >
< td > 1< / td >
< td > 1< / td >
< / tr >
< tr >
< td > 2< / td >
< td > 2< / td >
< td > < / td >
< td > 2< / td >
< td > 2< / td >
< td > 2< / td >
< / tr >
< tr >
< td > 3< / td >
< td > 3< / td >
< td > < / td >
< td > 4< / td >
< td > 2< / td >
< td > 3< / td >
< / tr >
< tr >
< td > 4< / td >
< td > 2< / td >
< td > < / td >
< td > 8< / td >
< td > 2< / td >
< td > 4< / td >
< / tr >
< tr >
< td > 5< / td >
< td > 5< / td >
< td > < / td >
< td > 3< / td >
< td > 3< / td >
< td > 5< / td >
< / tr >
< tr >
< td > 6< / td >
< td > 6< / td >
< td > < / td >
< td > 9< / td >
< td > 3< / td >
< td > 6< / td >
< / tr >
< tr >
< td > 7< / td >
< td > 7< / td >
< td > < / td >
< td > 5< / td >
< td > 5< / td >
< td > 7< / td >
< / tr >
< tr >
< td > 8< / td >
< td > 2< / td >
< td > < / td >
< td > 6< / td >
< td > 6< / td >
< td > 8< / td >
< / tr >
< tr >
< td > 9< / td >
< td > 3< / td >
< td > < / td >
< td > 7< / td >
< td > 7< / td >
< td > 9< / td >
< / tr >
< tr >
< td > 10< / td >
< td > 10< / td >
< td > < / td >
< td > 10< / td >
< td > 10< / td >
< td > 10< / td >
< / tr >
< / tbody >
< / table >
< / div > < br >
Considere $E(k)$ como o $k$-ésimo elemento na coluna de ordenados $n$; por exemplo, $E(4) = 8$ e $E(6) = 9$. Se $rad(n)$ estiver ordenado para $1 ≤ n ≤ 100000$, encontre $E(10000)$.
2021-06-15 00:49:18 -07:00
# --hints--
2021-11-04 07:53:18 -07:00
`orderedRadicals()` deve retornar `21417` .
2021-06-15 00:49:18 -07:00
```js
2021-11-04 07:53:18 -07:00
assert.strictEqual(orderedRadicals(), 21417);
2021-06-15 00:49:18 -07:00
```
# --seed--
## --seed-contents--
```js
2021-11-04 07:53:18 -07:00
function orderedRadicals() {
2021-06-15 00:49:18 -07:00
return true;
}
2021-11-04 07:53:18 -07:00
orderedRadicals();
2021-06-15 00:49:18 -07:00
```
# --solutions--
```js
// solution required
```