Uma melhor aproximação de $x$ para o denominador vinculado a $d$ é um número racional $\frac{r}{s}$ na forma reduzida, com $s ≤ d$, tal que qualquer número racional que esteja mais próximo de $x$ do que $\frac{r}{s}$ tenha um denominador maior que $d$:
Por exemplo, a melhor aproximação de $\sqrt{13}$ do denominador vinculado $20$ é $\frac{18}{5}$ e a melhor aproximação de $\sqrt{13}$ do denominador vinculado $30$ é $\frac{101}{28}$.
Encontre a soma de todos os denominadores das melhores aproximações de $\sqrt{n}$ para o denominador vinculado ${10}^{12}$, onde $n$ não é um quadrado perfeito e $1 < n ≤ 100000$.