2021-06-15 00:49:18 -07:00
|
|
|
---
|
|
|
|
id: 5900f47b1000cf542c50ff8d
|
2021-11-17 06:20:53 -08:00
|
|
|
title: 'Problema 271: Cubos modulares, parte 1'
|
2021-06-15 00:49:18 -07:00
|
|
|
challengeType: 5
|
|
|
|
forumTopicId: 301921
|
|
|
|
dashedName: problem-271-modular-cubes-part-1
|
|
|
|
---
|
|
|
|
|
|
|
|
# --description--
|
|
|
|
|
2021-11-17 06:20:53 -08:00
|
|
|
Para um número positivo $n$, defina $S(n)$ como a soma dos números inteiros $x$, para a qual $1 < x < n$ e $x^3 \equiv 1\bmod n$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2021-11-17 06:20:53 -08:00
|
|
|
Quando $n = 91$, existem 8 valores possíveis $x$: 9, 16, 22, 29, 53, 74, 79 e 81. Portanto, $S(91) = 9 + 16 + 22 + 29 + 53 + 74 + 79 + 81 = 363$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2021-11-17 06:20:53 -08:00
|
|
|
Encontre $S(13.082.761.331.670.030)$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
# --hints--
|
|
|
|
|
2021-11-17 06:20:53 -08:00
|
|
|
`modularCubesOne()` deve retornar `4617456485273130000`.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
```js
|
2021-11-17 06:20:53 -08:00
|
|
|
assert.strictEqual(modularCubesOne(), 4617456485273130000);
|
2021-06-15 00:49:18 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
# --seed--
|
|
|
|
|
|
|
|
## --seed-contents--
|
|
|
|
|
|
|
|
```js
|
2021-11-17 06:20:53 -08:00
|
|
|
function modularCubesOne() {
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2021-11-17 06:20:53 -08:00
|
|
|
modularCubesOne();
|
2021-06-15 00:49:18 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
# --solutions--
|
|
|
|
|
|
|
|
```js
|
|
|
|
// solution required
|
|
|
|
```
|