2021-06-15 00:49:18 -07:00
|
|
|
---
|
|
|
|
id: 5900f4e41000cf542c50fff5
|
2021-11-23 11:06:14 -08:00
|
|
|
title: 'Problema 375: Mínimo das subsequências'
|
2021-06-15 00:49:18 -07:00
|
|
|
challengeType: 5
|
|
|
|
forumTopicId: 302037
|
|
|
|
dashedName: problem-375-minimum-of-subsequences
|
|
|
|
---
|
|
|
|
|
|
|
|
# --description--
|
|
|
|
|
2021-11-23 11:06:14 -08:00
|
|
|
Considere $S_n$ como uma sequência de números inteiros produzida com o seguinte gerador de números pseudoaleatórios:
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2022-04-05 23:36:59 +05:30
|
|
|
$$\begin{align} S_0 & = 290.797 \\\\
|
|
|
|
S_{n + 1} & = {S_n}^2\bmod 50.515.093 \end{align}$$
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2021-11-23 11:06:14 -08:00
|
|
|
Considere $A(i, j)$ como o mínimo dos números $S_i, S_{i + 1}, \ldots, S_j$ para $i ≤ j$. Considere $M(N) = \sum A(i, j)$ para $1 ≤ i ≤ j ≤ N$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2021-11-23 11:06:14 -08:00
|
|
|
Podemos verificar que $M(10) = 432.256.955$ e $M(10.000) = 3.264.567.774.119$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2021-11-23 11:06:14 -08:00
|
|
|
Encontre $M(2.000.000.000)$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
# --hints--
|
|
|
|
|
2021-11-23 11:06:14 -08:00
|
|
|
`minimumOfSubsequences()` deve retornar `7435327983715286000`.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
```js
|
2021-11-23 11:06:14 -08:00
|
|
|
assert.strictEqual(minimumOfSubsequences(), 7435327983715286000);
|
2021-06-15 00:49:18 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
# --seed--
|
|
|
|
|
|
|
|
## --seed-contents--
|
|
|
|
|
|
|
|
```js
|
2021-11-23 11:06:14 -08:00
|
|
|
function minimumOfSubsequences() {
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2021-11-23 11:06:14 -08:00
|
|
|
minimumOfSubsequences();
|
2021-06-15 00:49:18 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
# --solutions--
|
|
|
|
|
|
|
|
```js
|
|
|
|
// solution required
|
|
|
|
```
|