6174 é um número incrível. Se ordenarmos seus algarismos em ordem crescente e subtrairmos esse número do número obtido ao ordenar os algarismos em ordem decrescente, temos $7641 - 1467 = 6174$.
Ainda mais incrível é o fato de que, se começarmos com qualquer número de 4 algarismos e repetirmos esse processo de ordenação e subtração, em algum momento chegaremos a 6174 ou imediatamente a 0 se todos os algarismos forem iguais.
6174 é chamado de constante de Kaprekar. O processo de ordenar e subtrair e repetir isso até chegar a 0 ou à constante de Kaprekar é chamado de rotina de Kaprekar.
Podemos considerar a rotina de Kaprekar para outras bases e quantidades de algarismos. Infelizmente, não é garantido que uma constante de Kaprekar exista em todos os casos; ou a rotina pode terminar em um ciclo para alguns números de entrada ou a constante a qual a rotina chega pode diferir para números de entrada diversos. Podemos, no entanto, mostrar que, para 5 algarismos e uma base $b = 6t + 3 ≠ 9$, existe uma constante de Kaprekar.
Observe que podemos definir $sb(i)$ para todos os números inteiros $i < b^5$. Se $i$ escrito na base $b$ tiver menos de 5 algarismos, o número recebe algarismos zero à esquerda até chegar a 5 algarismos antes de aplicar a rotina de Kaprekar.