2021-06-15 00:49:18 -07:00
|
|
|
---
|
|
|
|
id: 5900f5201000cf542c510032
|
2021-11-29 08:32:04 -08:00
|
|
|
title: 'Problema 435: Polinômios dos números de Fibonacci'
|
2021-06-15 00:49:18 -07:00
|
|
|
challengeType: 5
|
|
|
|
forumTopicId: 302106
|
|
|
|
dashedName: problem-435-polynomials-of-fibonacci-numbers
|
|
|
|
---
|
|
|
|
|
|
|
|
# --description--
|
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
Os números de Fibonacci $\\{f_n, n ≥ 0\\}$ são definidos recursivamente como $f_n = f_{n - 1} + f_{n - 2}$ com casos de base $f_0 = 0$ e $f_1 = 1$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
Defina os polinômios $\\{F_n, n ≥ 0\\}$ como $F_n(x) = \displaystyle\sum_{i = 0}^n f_ix^i$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
Por exemplo, $F_7(x) = x + x^2 + 2x^3 + 3x^4 + 5x^5 + 8x^6 + 13x^7$ e $F_7(11) = 268.357.683$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
Considere $n = {10}^{15}$. Encontre a soma $\displaystyle\sum_{x = 0}^{100} F_n(x)$ e dê sua resposta modulo $1.307.674.368.000 \\, (= 15!)$.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
# --hints--
|
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
`polynomialsOfFibonacciNumbers()` deve retornar `252541322550`.
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
```js
|
2021-11-29 08:32:04 -08:00
|
|
|
assert.strictEqual(polynomialsOfFibonacciNumbers(), 252541322550);
|
2021-06-15 00:49:18 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
# --seed--
|
|
|
|
|
|
|
|
## --seed-contents--
|
|
|
|
|
|
|
|
```js
|
2021-11-29 08:32:04 -08:00
|
|
|
function polynomialsOfFibonacciNumbers() {
|
2021-06-15 00:49:18 -07:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2021-11-29 08:32:04 -08:00
|
|
|
polynomialsOfFibonacciNumbers();
|
2021-06-15 00:49:18 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
# --solutions--
|
|
|
|
|
|
|
|
```js
|
|
|
|
// solution required
|
|
|
|
```
|