Files

53 lines
1.6 KiB
Markdown
Raw Permalink Normal View History

---
id: 5900f4951000cf542c50ffa8
title: 'Завдання 297: Теорема представлення Цекендорфа'
challengeType: 5
forumTopicId: 301949
dashedName: problem-297-zeckendorf-representation
---
# --description--
Кожне нове значення у послідовності Фібоначчі утворюється додаванням двох попередніх значень.
Починаючись з 1 і 2, перші 10 значень будуть такими: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89.
Кожне додатне ціле число можна однозначно записати як суму непослідовних значень послідовності Фібоначчі. Наприклад, 100 = 3 + 8 + 89.
Така сума називається представленням числа Цекендорфа.
Для будь-якого цілого числа $n>0$, нехай $z(n)$ буде кількістю значень в представленні Цекендорфа $n$.
Таким чином, $z(5) = 1$, $z(14) = 2$, $z(100) = 3$ etc.
Також, для $0 < n < {10}^6$, $\sum z(n) = 7\\,894\\,453$.
Знайдіть $\sum z(n)$ для $0 < n < {10}^{17}$.
# --hints--
`zeckendorfRepresentation()` має повернути `2252639041804718000`.
```js
assert.strictEqual(zeckendorfRepresentation(), 2252639041804718000);
```
# --seed--
## --seed-contents--
```js
function zeckendorfRepresentation() {
return true;
}
zeckendorfRepresentation();
```
# --solutions--
```js
// solution required
```