2020-08-13 12:00:20 +02:00
|
|
|
---
|
|
|
|
id: 5e8f2f13c4cdbe86b5c72d98
|
|
|
|
challengeType: 11
|
|
|
|
videoId: kfv0K8MtkIc
|
|
|
|
---
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
# --question--
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
## --text--
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
Fill in the blanks below to complete the architecture for a convolutional neural network:
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
```py
|
|
|
|
model = models.__A__()
|
|
|
|
model.add(layers.__B__(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
|
|
|
|
model.add(layers.__C__(2, 2))
|
|
|
|
model.add(layers.__B__(64, (3, 3), activation='relu'))
|
|
|
|
model.add(layers.__C__(2, 2))
|
|
|
|
model.add(layers.__B__(32, (3, 3), activation='relu'))
|
|
|
|
model.add(layers.__C__(2, 2))
|
|
|
|
```
|
|
|
|
|
|
|
|
## --answers--
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
A: `Sequential`
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
B: `add`
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
C: `Wrapper`
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
---
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
A: `keras`
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
B: `Cropping2D`
|
|
|
|
|
|
|
|
C: `AlphaDropout`
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
A: `Sequential`
|
|
|
|
|
|
|
|
B: `Conv2D`
|
|
|
|
|
|
|
|
C: `MaxPooling2D`
|
|
|
|
|
|
|
|
## --video-solution--
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
|
# --hints--
|
2020-08-13 12:00:20 +02:00
|
|
|
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
# --solutions--
|
2020-08-13 12:00:20 +02:00
|
|
|
|