Files
freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-333-special-partitions.md

51 lines
1.2 KiB
Markdown
Raw Normal View History

---
id: 5900f4b91000cf542c50ffcc
title: 问题333特殊分区
challengeType: 5
videoUrl: ''
dashedName: problem-333-special-partitions
---
# --description--
可以以这样的方式划分所有正整数分区的每个项可以表示为2ix3j其中ij≥0。
我们只考虑那些没有任何术语可以划分任何其他术语的分区。例如17 = 2 + 6 + 9 =21x30 + 21x31 + 20x32的分区将无效因为2可以除以6.分区17 = 16 + 1 =24x30 + 20x30也不会因为1可以除16. 17的唯一有效分区是8 + 9 =23x30 + 20x32
许多整数具有多个有效分区第一个是具有以下两个分区的11。 11 = 2 + 9 =21x30 + 20x3211 = 8 + 3 =23x30 + 20x31
让我们将Pn定义为n的有效分区数。例如P11= 2。
让我们只考虑具有单个有效分区的素数整数q例如P17
素数q <100的总和使得Pq= 1等于233。
找到质数q <1000000的总和使得Pq= 1。
# --hints--
`euler333()`应返回3053105。
```js
assert.strictEqual(euler333(), 3053105);
```
# --seed--
## --seed-contents--
```js
function euler333() {
return true;
}
euler333();
```
# --solutions--
```js
// solution required
```