El aprendizaje no supervisado nos permite abordar los problemas con poca o ninguna idea de cómo deberían ser nuestros resultados. Podemos derivar la estructura de datos donde no necesariamente sabemos el efecto de las variables.
Agrupación en clúster: se utiliza para el análisis exploratorio de datos para encontrar patrones ocultos o agrupación en datos. Tome una colección de 1,000,000 de genes diferentes, y encuentre una manera de agrupar automáticamente estos genes en grupos que de alguna manera sean similares o estén relacionados por diferentes variables, como la duración de la vida, la ubicación, los roles, etc.
Asociación: se utiliza cuando queremos descubrir reglas que describan una porción significativa de los datos. Un ejemplo de esto sería aprender que la gente que compra X producto también suele comprar un producto Y.
Agrupamiento k-significa. modelos de mezcla. Clustering jerárquico, detección de anomalías. Redes neuronales. Aprendizaje Hebbiano. Redes adversas generativas. Enfoques para aprender modelos de variables latentes como. Algoritmo de expectativa-maximización (EM) Método de los momentos.
Algunos ejemplos más: Supongamos que tiene datos para un sitio de comercio electrónico. Tiene una lista de personas y cosas que ordenaron en línea la semana pasada. Ahora puede usar los algoritmos de agrupación en clústeres y encontrar el patrón en los datos, predecir la tendencia de compra y formular la estrategia comercial según la tendencia.