A geometric progression is a sequence of numbers, whose first term is non zero and each term is obtained by multiplying its proceding term by a constant quantity. This constant quantity is called common ratio of the GP.
<a href="https://www.codecogs.com/eqnedit.php?latex=\boldsymbol{r}" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\boldsymbol{r}" title="\boldsymbol{r}" /></a> is known as common ratio of GP.
if a is the first term then GP can be written as <a href="https://www.codecogs.com/eqnedit.php?latex=a,ar,ar^{2},...,ar^{n-1}" target="_blank"><img src="https://latex.codecogs.com/gif.latex?a,ar,ar^{2},...,ar^{n-1}" title="a,ar,ar^{2},...,ar^{n-1}" /></a>
example of a GP : 2,4,8,16,....
## The nth term of GP (Also known as General term)
Let a be the first term, r be the common ratio and l be the last term of a GP, then nth term is given by
<a href="https://www.codecogs.com/eqnedit.php?latex=T_{n}&space;=&space;l&space;=&space;ar^{^{n-1}}" target="_blank"><img src="https://latex.codecogs.com/gif.latex?T_{n}&space;=&space;l&space;=&space;ar^{^{n-1}}" title="T_{n} = l = ar^{^{n-1}}" /></a>
where <a href="https://www.codecogs.com/eqnedit.php?latex=r=\frac{T_{n}}{T_{n-1}}" target="_blank"><img src="https://latex.codecogs.com/gif.latex?r=\frac{T_{n}}{T_{n-1}}" title="r=\frac{T_{n}}{T_{n-1}}" /></a>
# The sum of n terms of a GP
Let a be the first term, r be the common ratio and l be the last term of a GP, then sum of n terms is given by:
and <a href="https://www.codecogs.com/eqnedit.php?latex=S_{n}" target="_blank"><img src="https://latex.codecogs.com/gif.latex?S_{n}" title="S_{n}" /></a> is not defined for r=1
# Geometric Mean
if we insert geometric mean between two numbers <a href="https://www.codecogs.com/eqnedit.php?latex=n_{1}" target="_blank"><img src="https://latex.codecogs.com/gif.latex?n_{1}" title="n_{1}" /></a> and <a href="https://www.codecogs.com/eqnedit.php?latex=n_{2}" target="_blank"><img src="https://latex.codecogs.com/gif.latex?n_{2}" title="n_{2}" /></a> , then
Geometric mean = <a href="https://www.codecogs.com/eqnedit.php?latex=\sqrt{n_{1}*n_{2}}" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\sqrt{n_{1}*n_{2}}" title="\sqrt{n_{1}*n_{2}}" /></a>