41 lines
1.1 KiB
Markdown
Raw Normal View History

---
id: 5900f3ea1000cf542c50fefd
title: 问题126长方体层
challengeType: 5
videoUrl: ''
dashedName: problem-126-cuboid-layers
---
# --description--
覆盖尺寸为3 x 2 x 1的长方体上每个可见面的最小立方体数量为22。
如果我们在这个固体上添加第二层则需要四十六个立方体来覆盖每个可见面第三层需要七十八个立方体第四层需要一百一十八个立方体来覆盖每个可见面。然而尺寸为5 x 1 x 1的长方体上的第一层也需要22个立方体;类似地尺寸为5 x 3 x 1,7 x 2 x 1和11 x 1 x 1的长方体上的第一层都包含四十六个立方体。我们将定义Cn来表示在其一个层中包含n个立方体的长方体的数量。因此C22= 2C46= 4C78= 5并且C118= 8.结果154是n的最小值其中Cn= 10。找到n的最小值其中Cn= 1000。
# --hints--
`euler126()`应返回18522。
```js
assert.strictEqual(euler126(), 18522);
```
# --seed--
## --seed-contents--
```js
function euler126() {
return true;
}
euler126();
```
# --solutions--
```js
// solution required
```