* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.1 KiB
1.1 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f3ea1000cf542c50fefd | 问题126:长方体层 | 5 | problem-126-cuboid-layers |
--description--
覆盖尺寸为3 x 2 x 1的长方体上每个可见面的最小立方体数量为22。
如果我们在这个固体上添加第二层,则需要四十六个立方体来覆盖每个可见面,第三层需要七十八个立方体,第四层需要一百一十八个立方体来覆盖每个可见面。然而,尺寸为5 x 1 x 1的长方体上的第一层也需要22个立方体;类似地,尺寸为5 x 3 x 1,7 x 2 x 1和11 x 1 x 1的长方体上的第一层都包含四十六个立方体。我们将定义C(n)来表示在其一个层中包含n个立方体的长方体的数量。因此,C(22)= 2,C(46)= 4,C(78)= 5,并且C(118)= 8.结果,154是n的最小值,其中C(n)= 10。找到n的最小值,其中C(n)= 1000。
--hints--
euler126()
应返回18522。
assert.strictEqual(euler126(), 18522);
--seed--
--seed-contents--
function euler126() {
return true;
}
euler126();
--solutions--
// solution required